基于GRU和AM-Softmax的句子相似度模型
By 苏剑林 | 2018-07-29 | 336310位读者 | 引用搞计算机视觉的朋友会知道,AM-Softmax是人脸识别中的成果。所以这篇文章就是借鉴人脸识别的做法来做句子相似度模型,顺便介绍在Keras下各种margin loss的写法。
背景
细想之下会发现,句子相似度与人脸识别有很多的相似之处~
已有的做法
在我搜索到的资料中,深度学习做句子相似度模型,就只有两种做法:一是输入一对句子,然后输出一个0/1标签代表相似程度,也就是视为一个二分类问题,比如《Learning Text Similarity with Siamese Recurrent Networks》中的模型是这样的
包括今年拍拍贷的“魔镜杯”,也是这种格式。另外一种做法是输入一个三元组“(句子A,跟A相似的句子,跟A不相似的句子)”,然后用triplet loss的做法解决,比如文章《Applying Deep Learning To Answer Selection: A Study And An Open Task》中的做法。
这两种做法其实也可以看成是一种,本质上是一样的,只不过loss和训练方法有所差别。但是,这两种方法却都有一个很严重的问题:负样本采样严重不足,导致效果提升非常慢。
WGAN-div:一个默默无闻的WGAN填坑者
By 苏剑林 | 2018-11-07 | 157759位读者 | 引用今天我们来谈一下Wasserstein散度,简称“W散度”。注意,这跟Wasserstein距离(Wasserstein distance,简称“W距离”,又叫Wasserstein度量、Wasserstein metric)是不同的两个东西。
本文源于论文《Wasserstein Divergence for GANs》,论文中提出了称为WGAN-div的GAN训练方案。这是一篇我很是欣赏却默默无闻的paper,我只是找文献时偶然碰到了它。不管英文还是中文界,它似乎都没有流行起来,但是我感觉它是一个相当漂亮的结果。
如果读者需要入门一下WGAN的相关知识,不妨请阅读拙作《互怼的艺术:从零直达WGAN-GP》。
WGAN
我们知道原始的GAN(SGAN)会有可能存在梯度消失的问题,因此WGAN横空出世了。
W距离
WGAN引入了最优传输里边的W距离来度量两个分布的距离:
\begin{equation}W_c[\tilde{p}(x), q(x)] = \inf_{\gamma\in \Pi(\tilde{p}(x), q(x))} \mathbb{E}_{(x,y)\sim \gamma}[c(x,y)] \end{equation}
这里的$\tilde{p}(x)$是真实样本的分布,$q(x)$是伪造分布,$c(x,y)$是传输成本,论文中用的是$c(x,y)=\Vert x-y\Vert$;而$\gamma\in \Pi(\tilde{p}(x), q(x))$的意思是说:$\gamma$是任意关于$x, y$的二元分布,其边缘分布则为$\tilde{p}(x)$和$q(y)$。直观来看,$\gamma$描述了一个运输方案,而$c(x,y)$则是运输成本,$W_c[\tilde{p}(x), q(x)]$就是说要找到成本最低的那个运输方案所对应的成本作为分布度量。
从DCGAN到SELF-MOD:GAN的模型架构发展一览
By 苏剑林 | 2019-04-19 | 81355位读者 | 引用为节约而生:从标准Attention到稀疏Attention
By 苏剑林 | 2019-07-27 | 134837位读者 | 引用如今NLP领域,Attention大行其道,当然也不止NLP,在CV领域Attention也占有一席之地(Non Local、SAGAN等)。在18年初《〈Attention is All You Need〉浅读(简介+代码)》一文中,我们就已经讨论过Attention机制,Attention的核心在于$\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}$三个向量序列的交互和融合,其中$\boldsymbol{Q},\boldsymbol{K}$的交互给出了两两向量之间的某种相关度(权重),而最后的输出序列则是把$\boldsymbol{V}$按照权重求和得到的。
显然,众多NLP&CV的成果已经充分肯定了Attention的有效性。本文我们将会介绍Attention的一些变体,这些变体的共同特点是——“为节约而生”——既节约时间,也节约显存。
背景简述
《Attention is All You Need》一文讨论的我们称之为“乘性Attention”,目前用得比较广泛的也就是这种Attention:
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d_k}}\right)\boldsymbol{V}\end{equation}
基于Bert的NL2SQL模型:一个简明的Baseline
By 苏剑林 | 2019-06-29 | 142326位读者 | 引用在之前的文章《当Bert遇上Keras:这可能是Bert最简单的打开姿势》中,我们介绍了基于微调Bert的三个NLP例子,算是体验了一把Bert的强大和Keras的便捷。而在这篇文章中,我们再添一个例子:基于Bert的NL2SQL模型。
NL2SQL的NL也就是Natural Language,所以NL2SQL的意思就是“自然语言转SQL语句”,近年来也颇多研究,它算是人工智能领域中比较实用的一个任务。而笔者做这个模型的契机,则是今年我司举办的首届“中文NL2SQL挑战赛”:
首届中文NL2SQL挑战赛,使用金融以及通用领域的表格数据作为数据源,提供在此基础上标注的自然语言与SQL语句的匹配对,希望选手可以利用数据训练出可以准确转换自然语言到SQL的模型。
这个NL2SQL比赛算是今年比较大型的NLP赛事了,赛前投入了颇多人力物力进行宣传推广,比赛的奖金也颇丰富,唯一的问题是NL2SQL本身算是偏冷门的研究领域,所以注定不会太火爆,为此主办方也放出了一个Baseline,基于Pytorch写的,希望能降低大家的入门难度。
抱着“Baseline怎么能少得了Keras版”的心态,我抽时间自己用Keras做了做这个比赛,为了简化模型并且提升效果也加载了预训练的Bert模型,最终形成此文。
seq2seq之双向解码
By 苏剑林 | 2019-08-09 | 46688位读者 | 引用在文章《玩转Keras之seq2seq自动生成标题》中我们已经基本探讨过seq2seq,并且给出了参考的Keras实现。
本文则将这个seq2seq再往前推一步,引入双向的解码机制,它在一定程度上能提高生成文本的质量(尤其是生成较长文本时)。本文所介绍的双向解码机制参考自《Synchronous Bidirectional Neural Machine Translation》,最后笔者也是用Keras实现的。
背景介绍
研究过seq2seq的读者都知道,常见的seq2seq的解码过程是从左往右逐字(词)生成的,即根据encoder的结果先生成第一个字;然后根据encoder的结果以及已经生成的第一个字,来去生成第二个字;再根据encoder的结果和前两个字,来生成第三个词;依此类推。总的来说,就是在建模如下概率分解
\begin{equation}p(Y|X)=p(y_1|X)p(y_2|X,y_1)p(y_3|X,y_1,y_2)\cdots\label{eq:p}\end{equation}
百度实体链接比赛后记:行为建模和实体链接
By 苏剑林 | 2019-09-03 | 86983位读者 | 引用前几个月曾参加了百度的实体链接比赛,这是CCKS2019的评测任务之一,官方称之为“实体链指”,比赛于前几个星期完全结束。笔者最终的F1是0.78左右(冠军是0.80),排在第14名,成绩并不突出(唯一的特色是模型很轻量级,GTX1060都可以轻松跑起来),所以本文只是纯粹的记录过程,大牛们请一笑置之~
赛题介绍
所谓实体链接,主要指的是在已有一个知识库的情况下,预测输入query的某个实体对应知识库id。也就是说,知识库里边记录了很多实体,对于同一个名字的实体可能会有多个解释,每个解释用一个唯一id编号,我们要做的就是预测query中的实体究竟对应哪一个解释(id)。这是基于知识图谱的问答系统的必要步骤。
最近评论