7 Oct

深度学习中的Lipschitz约束:泛化与生成模型

前言:去年写过一篇WGAN-GP的入门读物《互怼的艺术:从零直达WGAN-GP》,提到通过梯度惩罚来为WGAN的判别器增加Lipschitz约束(下面简称“L约束”)。前几天遐想时再次想到了WGAN,总觉得WGAN的梯度惩罚不够优雅,后来也听说WGAN在条件生成时很难搞(因为不同类的随机插值就开始乱了...),所以就想琢磨一下能不能搞出个新的方案来给判别器增加L约束。

闭门造车想了几天,然后发现想出来的东西别人都已经做了,果然是只有你想不到,没有别人做不到呀。主要包含在这两篇论文中:《Spectral Norm Regularization for Improving the Generalizability of Deep Learning》《Spectral Normalization for Generative Adversarial Networks》

所以这篇文章就按照自己的理解思路,对L约束相关的内容进行简单的介绍。注意本文的主题是L约束,并不只是WGAN。它可以用在生成模型中,也可以用在一般的监督学习中。

L约束与泛化

扰动敏感

记输入为$x$,输出为$y$,模型为$f$,模型参数为$w$,记为
$$\begin{equation}y = f_w(x)\end{equation}$$
很多时候,我们希望得到一个“稳健”的模型。何为稳健?一般来说有两种含义,一是对于参数扰动的稳定性,比如模型变成了$f_{w+\Delta w}(x)$后是否还能达到相近的效果?如果在动力学系统中,还要考虑模型最终是否能恢复到$f_w(x)$;二是对于输入扰动的稳定性,比如输入从$x$变成了$x+\Delta x$后,$f_w(x+\Delta x)$是否能给出相近的预测结果。读者或许已经听说过深度学习模型存在“对抗攻击样本”,比如图片只改变一个像素就给出完全不一样的分类结果,这就是模型对输入过于敏感的案例。

点击阅读全文...

1 Sep

玩转Keras之seq2seq自动生成标题

话说自称搞了这么久的NLP,我都还没有真正跑过NLP与深度学习结合的经典之作——seq2seq。这两天兴致来了,决定学习并实践一番seq2seq,当然最后少不了Keras实现了。

seq2seq可以做的事情非常多,我这挑选的是比较简单的根据文章内容生成标题(中文),也可以理解为自动摘要的一种。选择这个任务主要是因为“文章-标题”这样的语料对比较好找,能快速实验一下。

seq2seq简介

所谓seq2seq,就是指一般的序列到序列的转换任务,比如机器翻译、自动文摘等等,这种任务的特点是输入序列和输出序列是不对齐的,如果对齐的话,那么我们称之为序列标注,这就比seq2seq简单很多了。所以尽管序列标注任务也可以理解为序列到序列的转换,但我们在谈到seq2seq时,一般不包含序列标注。

要自己实现seq2seq,关键是搞懂seq2seq的原理和架构,一旦弄清楚了,其实不管哪个框架实现起来都不复杂。早期有一个第三方实现的Keras的seq2seq库,现在作者也已经放弃更新了,也许就是觉得这么简单的事情没必要再建一个库了吧。可以参考的资料还有去年Keras官方博客中写的《A ten-minute introduction to sequence-to-sequence learning in Keras》

点击阅读全文...

6 Aug

让Keras更酷一些!Keras模型杂谈

Keras伴我走来

回想起进入机器学习领域的这两三年来,Keras是一直陪伴在笔者的身边。要不是当初刚掉进这个坑时碰到了Keras这个这么易用的框架,能快速实现我的想法,我也不确定我是否能有毅力坚持下来,毕竟当初是theano、pylearn、caffe、torch等的天下,哪怕在今天它们对我来说仍然像天书一般。

后来为了拓展视野,我也去学习了一段时间的tensorflow,用纯tensorflow写过若干程序,但不管怎样,仍然无法割舍Keras。随着对Keras的了解的深入,尤其是花了一点时间研究过Keras的源码后,我发现Keras并没有大家诟病的那样“欠缺灵活性”。事实上,Keras那精巧的封装,可以让我们轻松实现很多复杂的功能。我越来越感觉,Keras像是一件非常精美的艺术品,充分体现了Keras的开发者们深厚的创作功力。

本文介绍Keras中自定义模型的一些内容,相对而言,这属于Keras进阶的内容,刚入门的朋友请暂时忽略。

层的自定义

这里介绍Keras中自定义层及其一些运用技巧。

点击阅读全文...

7 Jul

从SamplePairing到mixup:神奇的正则项

SamplePairingmixup是两种一脉相承的图像数据扩增手段,它们看起来很不合理,而操作则非常简单,但结果却非常漂亮:在多个图像分类任务中都表明它们能提高最终分类模型的精度。

某些读者会困惑于一个问题:为什么如此不合理的数据扩增手段,能得到如此好的效果?而本文则要表明,它们看起来是一种数据扩增方法,事实上它们是对模型的一种正则化方案。正如周星驰的电影《国产凌凌漆》的一句经典台词:

表面上看这是一个吹风机,其实它是一个刮胡刀。

数据扩增

让我们从数据扩增说起。数据扩增是指我们在对原始数据做一些简单的变换后,它们对应的类别往往不会变化,所以我们可以在原来数据的基础上,“造”出更多的数据来。比如一幅小狗的照片,将它水平翻转、轻微的旋转、裁剪、平移等操作后,我们认为它的类别没有变化,它还是原来的那只狗。这样一来,从一个样本我们可以衍生出好几个样本,从而增加了训练样本量。

狗

旋转的狗

旋转的狗

点击阅读全文...

18 May

简明条件随机场CRF介绍(附带纯Keras实现)

笔者去年曾写过博文《果壳中的条件随机场(CRF In A Nutshell)》,以一种比较粗糙的方式介绍了一下条件随机场(CRF)模型。然而那篇文章显然有很多不足的地方,比如介绍不够清晰,也不够完整,还没有实现,在这里我们重提这个模型,将相关内容补充完成。

本文是对CRF基本原理的一个简明的介绍。当然,“简明”是相对而言中,要想真的弄清楚CRF,免不了要提及一些公式,如果只关心调用的读者,可以直接移到文末。

图示

按照之前的思路,我们依旧来对比一下普通的逐帧softmax和CRF的异同。

逐帧softmax

CRF主要用于序列标注问题,可以简单理解为是给序列中的每一帧都进行分类,既然是分类,很自然想到将这个序列用CNN或者RNN进行编码后,接一个全连接层用softmax激活,如下图所示

逐帧softmax并没有直接考虑输出的上下文关联

逐帧softmax并没有直接考虑输出的上下文关联

点击阅读全文...

2 May

基于Conv1D的光谱分类模型(一维序列分类)

前段时间天池出了个天文数据挖掘竞赛——LAMOST光谱分类(将对应的光谱识别为4类中的一类),虽然没有奖金,但还是觉得挺有意思,所以就报名参加了。做了一段时间,成绩自我感觉还可以,然而最后我却忘记了(或者说根本就没留意到)初赛最后两天还有一步是提交新的测试集结果,然后就没有然后了,留下了一个未竟的模型,可谓“出师未捷身先死”,还是被自己弄死的~

天文数据挖掘大赛——天体光谱智能分类

天文数据挖掘大赛——天体光谱智能分类

后来跟其他参赛选手讨论了一下,发现其实我的这个模型还是不错的。当时我记得初赛第一名的成绩是0.83+,而我当时的成绩是0.82+,排名大概是第4、5左右,而且据说很多分数在0.8+的队伍都已经使用了融合模型,而我这0.82+的成绩仅仅是单模型的结果~在平时的群聊中发现也有不少朋友在做一维序列分类模型,而光谱分类本质上也就是一个一维的序列分类,所以分享一下模型,估计对相关朋友会有一定的参考价值。

模型

事实上也不是什么特别的模型,就是普通的一维卷积加残差,对于熟悉图像处理的朋友,这实在是再普通不过的结构了。

点击阅读全文...

15 Apr

基于CNN的阅读理解式问答模型:DGCNN

早在年初的《Attention is All You Need》的介绍文章中就已经承诺过会分享CNN在NLP中的使用心得,然而一直不得其便。这几天终于下定决心来整理一下相关的内容了。

背景

事不宜迟,先来介绍一下模型的基本情况。

模型特点

本模型——我称之为DGCNN——是基于CNN和简单的Attention的模型,由于没有用到RNN结构,因此速度相当快,而且是专门为这种WebQA式的任务定制的,因此也相当轻量级。SQUAD排行榜前面的模型,如AoA、R-Net等,都用到了RNN,并且还伴有比较复杂的注意力交互机制,而这些东西在DGCNN中基本都没有出现。

这是一个在GTX1060上都可以几个小时训练完成的模型!

截止到2018.04.14的排行榜

截止到2018.04.14的排行榜

DGCNN,全名为Dilate Gated Convolutional Neural Network,即“膨胀门卷积神经网络”,顾名思义,融合了两个比较新的卷积用法:膨胀卷积、门卷积,并增加了一些人工特征和trick,最终使得模型在轻、快的基础上达到最佳的效果。在本文撰写之时,本文要介绍的模型还位于榜首,得分(得分是准确率与F1的平均)为0.7583,而且是到目前为止唯一一个一直没有跌出前三名、并且获得周冠军次数最多的模型。

点击阅读全文...

6 Jan

《Attention is All You Need》浅读(简介+代码)

2017年中,有两篇类似同时也是笔者非常欣赏的论文,分别是FaceBook的《Convolutional Sequence to Sequence Learning》和Google的《Attention is All You Need》,它们都算是Seq2Seq上的创新,本质上来说,都是抛弃了RNN结构来做Seq2Seq任务。

这篇博文中,笔者对《Attention is All You Need》做一点简单的分析。当然,这两篇论文本身就比较火,因此网上已经有很多解读了(不过很多解读都是直接翻译论文的,鲜有自己的理解),因此这里尽可能多自己的文字,尽量不重复网上各位大佬已经说过的内容。

序列编码

深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列。这样一来,每个句子都对应的是一个矩阵$\boldsymbol{X}=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_t)$,其中$\boldsymbol{x}_i$都代表着第$i$个词的词向量(行向量),维度为$d$维,故$\boldsymbol{X}\in \mathbb{R}^{n\times d}$。这样的话,问题就变成了编码这些序列了。

第一个基本的思路是RNN层,RNN的方案很简单,递归式进行:
$$\boldsymbol{y}_t = f(\boldsymbol{y}_{t-1},\boldsymbol{x}_t)$$
不管是已经被广泛使用的LSTM、GRU还是最近的SRU,都并未脱离这个递归框架。RNN结构本身比较简单,也很适合序列建模,但RNN的明显缺点之一就是无法并行,因此速度较慢,这是递归的天然缺陷。另外我个人觉得RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程

点击阅读全文...