20 Nov

不用L约束又不会梯度消失的GAN,了解一下?

不知道从什么时候开始,我发现我也掉到了GAN的大坑里边了,唉,争取早日能跳出来...

这篇博客介绍的是我最近提交到arxiv的一个关于GAN的新框架,里边主要介绍了一种对概率散度的新理解,并且基于这种理解推导出了一个新的GAN。整篇文章比较偏理论,对这个GAN的相关性质都做了完整的论证,自认为是一个理论完备的结果。

文章链接:https://arxiv.org/abs/1811.07296

先摆结论:

1、论文提供了一种分析和构造概率散度的直接思路,从而简化了构建新GAN框架的过程。

2、推导出了一个称为GAN-QP的GAN框架$\eqref{eq:gan-gp-gd}$,这个GAN不需要像WGAN那样的L约束,又不会有SGAN的梯度消失问题,实验表明它至少有不逊色于、甚至优于WGAN的表现。

GAN-QP效果图

GAN-QP效果图

论文的实验最大做到了512x512的人脸生成(CelebA HQ),充分表明了模型的有效性(效果不算完美,但是模型特别简单)。有兴趣的朋友,欢迎继续阅读下去。

点击阅读全文...

7 Nov

WGAN-div:一个默默无闻的WGAN填坑者

今天我们来谈一下Wasserstein散度,简称“W散度”。注意,这跟Wasserstein距离(Wasserstein distance,简称“W距离”,又叫Wasserstein度量、Wasserstein metric)是不同的两个东西。

本文源于论文《Wasserstein Divergence for GANs》,论文中提出了称为WGAN-div的GAN训练方案。这是一篇我很是欣赏却默默无闻的paper,我只是找文献时偶然碰到了它。不管英文还是中文界,它似乎都没有流行起来,但是我感觉它是一个相当漂亮的结果。

WGAN-div的部分样本(2w iter)

WGAN-div的部分样本(2w iter)

如果读者需要入门一下WGAN的相关知识,不妨请阅读拙作《互怼的艺术:从零直达WGAN-GP》

WGAN

我们知道原始的GAN(SGAN)会有可能存在梯度消失的问题,因此WGAN横空出世了。

W距离

WGAN引入了最优传输里边的W距离来度量两个分布的距离:
\begin{equation}W_c[\tilde{p}(x), q(x)] = \inf_{\gamma\in \Pi(\tilde{p}(x), q(x))} \mathbb{E}_{(x,y)\sim \gamma}[c(x,y)] \end{equation}
这里的$\tilde{p}(x)$是真实样本的分布,$q(x)$是伪造分布,$c(x,y)$是传输成本,论文中用的是$c(x,y)=\Vert x-y\Vert$;而$\gamma\in \Pi(\tilde{p}(x), q(x))$的意思是说:$\gamma$是任意关于$x, y$的二元分布,其边缘分布则为$\tilde{p}(x)$和$q(y)$。直观来看,$\gamma$描述了一个运输方案,而$c(x,y)$则是运输成本,$W_c[\tilde{p}(x), q(x)]$就是说要找到成本最低的那个运输方案所对应的成本作为分布度量。

点击阅读全文...