18 Oct

初始化方法中非方阵的维度平均策略思考

《从几何视角来理解模型参数的初始化策略》《浅谈Transformer的初始化、参数化与标准化》等文章,我们讨论过模型的初始化方法,大致的思路是:如果一个$n\times n$的方阵用均值为0、方差为$1/n$的独立同分布初始化,那么近似于一个正交矩阵,使得数据二阶矩(或方差)在传播过程中大致保持不变。

那如果是$m\times n$的非方阵呢?常见的思路(Xavier初始化)是综合考虑前向传播和反向传播,所以使用均值为0、方差为$2/(m+n)$的独立同分布初始化。但这个平均更多是“拍脑袋”的,本文就来探究一下有没有更好的平均方案。

基础回顾

Xavier初始化是考虑如下的全连接层(设输入节点数为$m$,输出节点数为$n$)
\begin{equation} y_j = b_j + \sum_i x_i w_{i,j}\end{equation}

点击阅读全文...

24 Aug

我们知道,梯度累积是在有限显存下实现大batch_size训练的常用技巧。在之前的文章《用时间换取效果:Keras梯度累积优化器》中,我们就简单介绍过梯度累积的实现,大致的思路是新增一组参数来缓存梯度,最后用缓存的梯度来更新模型。美中不足的是,新增一组参数会带来额外的显存占用。

这几天笔者在思考优化器的时候,突然意识到:梯度累积其实可以内置在带动量的优化器中!带着这个思路,笔者对优化了进行了一些推导和实验,最后还得到一个有意思但又有点反直觉的结论:少更新几步参数,模型最终效果可能会变好!

SGDM

在正式讨论之前,我们定义函数
\begin{equation}\chi_{t/k} = \left\{ \begin{aligned}&1,\quad t \equiv 0\,(\text{mod}\, k) \\
&0,\quad t \not\equiv 0\,(\text{mod}\, k)
\end{aligned}\right.\end{equation}
也就是说,$t$是一个整数,当它是$k$的倍数时,$\chi_{t/k}=1$,否则$\chi_{t/k}=0$,这其实就是一个$t$能否被$k$整除的示性函数。在后面的讨论中,我们将反复用到这个函数。

点击阅读全文...

17 Aug

浅谈Transformer的初始化、参数化与标准化

前几天在训练一个新的Transformer模型的时候,发现怎么训都不收敛了。经过一番debug,发现是在做Self Attention的时候$\boldsymbol{Q}\boldsymbol{K}^{\top}$之后忘记除以$\sqrt{d}$了,于是重新温习了一下为什么除以$\sqrt{d}$如此重要的原因。当然,Google的T5确实是没有除以$\sqrt{d}$的,但它依然能够正常收敛,那是因为它在初始化策略上做了些调整,所以这个事情还跟初始化有关。

藉着这个机会,本文跟大家一起梳理一下模型的初始化、参数化和标准化等内容,相关讨论将主要以Transformer为心中展开。

采样分布

初始化自然是随机采样的的,所以这里先介绍一下常用的采样分布。一般情况下,我们都是从指定均值和方差的随机分布中进行采样来初始化。其中常用的随机分布有三个:正态分布(Normal)、均匀分布(Uniform)和截尾正态分布(Truncated Normal)。

点击阅读全文...

17 Jun

对比学习可以使用梯度累积吗?

在之前的文章《用时间换取效果:Keras梯度累积优化器》中,我们介绍过“梯度累积”,它是在有限显存下实现大batch_size效果的一种技巧。一般来说,梯度累积适用的是loss是独立同分布的场景,换言之每个样本单独计算loss,然后总loss是所有单个loss的平均或求和。然而,并不是所有任务都满足这个条件的,比如最近比较热门的对比学习,每个样本的loss还跟其他样本有关。

那么,在对比学习场景,我们还可以使用梯度累积来达到大batch_size的效果吗?本文就来分析这个问题。

简介

一般情况下,对比学习的loss可以写为
\begin{equation}\mathcal{L}=-\sum_{i,j=1}^b t_{i,j}\log p_{i,j} = -\sum_{i,j=1}^b t_{i,j}\log \frac{e^{s_{i,j}}}{\sum\limits_j e^{s_{i,j}}}=-\sum_{i,j=1}^b t_{i,j}s_{i,j} + \sum_{i=1}^b \log\sum_{j=1}^b e^{s_{i,j}}\label{eq:loss}\end{equation}
这里的$b$是batch_size;$t_{i,j}$是事先给定的标签,满足$t_{i,j}=t_{j,i}$,它是一个one hot矩阵,每一列只有一个1,其余都为0;而$s_{i,j}$是样本$i$和样本$j$的相似度,满足$s_{i,j}=s_{j,i}$,一般情况下还有个温度参数,这里假设温度参数已经整合到$s_{i,j}$中,从而简化记号。模型参数存在于$s_{i,j}$中,假设为$\theta$。

点击阅读全文...

24 Dec

RealFormer:把残差转移到Attention矩阵上面去

大家知道Layer Normalization是Transformer模型的重要组成之一,它的用法有PostLN和PreLN两种,论文《On Layer Normalization in the Transformer Architecture》中有对两者比较详细的分析。简单来说,就是PreLN对梯度下降更加友好,收敛更快,对训练时的超参数如学习率等更加鲁棒等,反正一切都好但就有一点硬伤:PreLN的性能似乎总略差于PostLN。最近Google的一篇论文《RealFormer: Transformer Likes Residual Attention》提出了RealFormer设计,成功地弥补了这个Gap,使得模型拥有PreLN一样的优化友好性,并且效果比PostLN还好,可谓“鱼与熊掌兼得”了。

PostLN、PreLN和RealFormer结构示意图

PostLN、PreLN和RealFormer结构示意图

点击阅读全文...

13 Nov

也来谈谈RNN的梯度消失/爆炸问题

尽管Transformer类的模型已经攻占了NLP的多数领域,但诸如LSTM、GRU之类的RNN模型依然在某些场景下有它的独特价值,所以RNN依然是值得我们好好学习的模型。而对于RNN梯度的相关分析,则是一个从优化角度思考分析模型的优秀例子,值得大家仔细琢磨理解。君不见,诸如“LSTM为什么能解决梯度消失/爆炸”等问题依然是目前流行的面试题之一...

经典的LSTM

经典的LSTM

关于此类问题,已有不少网友做出过回答,然而笔者查找了一些文章(包括知乎上的部分回答、专栏以及经典的英文博客),发现没有找到比较好的答案:有些推导记号本身就混乱不堪,有些论述过程没有突出重点,整体而言感觉不够清晰自洽。为此,笔者也尝试给出自己的理解,供大家参考。

点击阅读全文...

本文的主题是“为什么我们需要有限的学习率”,所谓“有限”,指的是不大也不小,适中即可,太大容易导致算法发散,这不难理解,但为什么太小也不好呢?一个容易理解的答案是,学习率过小需要迭代的步数过多,这是一种没有必要的浪费,因此从“节能”和“加速”的角度来看,我们不用过小的学习率。但如果不考虑算力和时间,那么过小的学习率是否可取呢?Google最近发布在Arxiv上的论文《Implicit Gradient Regularization》试图回答了这个问题,它指出有限的学习率隐式地给优化过程带来了梯度惩罚项,而这个梯度惩罚项对于提高泛化性能是有帮助的,因此哪怕不考虑算力和时间等因素,也不应该用过小的学习率。

对于梯度惩罚,本博客已有过多次讨论,在文章《对抗训练浅谈:意义、方法和思考(附Keras实现)》《泛化性乱弹:从随机噪声、梯度惩罚到虚拟对抗训练》中,我们就分析了对抗训练一定程度上等价于对输入的梯度惩罚,而文章《我们真的需要把训练集的损失降低到零吗?》介绍的Flooding技巧则相当于对参数的梯度惩罚。总的来说,不管是对输入还是对参数的梯度惩罚,都对提高泛化能力有一定帮助。

点击阅读全文...

15 Sep

殊途同归的策略梯度与零阶优化

深度学习如此成功的一个巨大原因就是基于梯度的优化算法(SGD、Adam等)能有效地求解大多数神经网络模型。然而,既然是基于梯度,那么就要求模型是可导的,但随着研究的深入,我们时常会有求解不可导模型的需求,典型的例子就是直接优化准确率、F1、BLEU等评测指标,或者在神经网络里边加入了不可导模块(比如“跳读”操作)。

Gradient

Gradient

本文将简单介绍两种求解不可导的模型的有效方法:强化学习的重要方法之一策略梯度(Policy Gradient),以及干脆不需要梯度的零阶优化(Zeroth Order Optimization)。表面上来看,这是两种思路完全不一样的优化方法,但本文将进一步证明,在一大类优化问题中,其实两者基本上是等价的。

点击阅读全文...