Adam的epsilon如何影响学习率的Scaling Law?
By 苏剑林 | 2024-11-18 | 1553位读者 | 引用上一篇文章《当Batch Size增大时,学习率该如何随之变化?》我们从多个角度讨论了学习率与Batch Size之间的缩放规律,其中对于Adam优化器我们采用了SignSGD近似,这是分析Adam优化器常用的手段。那么一个很自然的问题就是:用SignSGD来近似Adam究竟有多科学呢?
我们知道,Adam优化器的更新量分母会带有一个$\epsilon$,初衷是预防除零错误,所以其值通常很接近于零,以至于我们做理论分析的时候通常选择忽略掉它。然而,当前LLM的训练尤其是低精度训练,我们往往会选择偏大的$\epsilon$,这导致在训练的中、后期$\epsilon$往往已经超过梯度平方大小,所以$\epsilon$的存在事实上已经不可忽略。
因此,这篇文章我们试图探索$\epsilon$如何影响Adam的学习率与Batch Size的Scaling Law,为相关问题提供一个参考的计算方案。
当Batch Size增大时,学习率该如何随之变化?
By 苏剑林 | 2024-11-14 | 5142位读者 | 引用随着算力的飞速进步,有越多越多的场景希望能够实现“算力换时间”,即通过堆砌算力来缩短模型训练时间。理想情况下,我们希望投入$n$倍的算力,那么达到同样效果的时间则缩短为$1/n$,此时总的算力成本是一致的。这个“希望”看上去很合理和自然,但实际上并不平凡,即便我们不考虑通信之类的瓶颈,当算力超过一定规模或者模型小于一定规模时,增加算力往往只能增大Batch Size。然而,增大Batch Size一定可以缩短训练时间并保持效果不变吗?
这就是接下来我们要讨论的话题:当Batch Size增大时,各种超参数尤其是学习率该如何调整,才能保持原本的训练效果并最大化训练效率?我们也可以称之为Batch Size与学习率之间的Scaling Law。
方差视角
直觉上,当Batch Size增大时,每个Batch的梯度将会更准,所以步子就可以迈大一点,也就是增大学习率,以求更快达到终点,缩短训练时间,这一点大体上都能想到。问题就是,增大多少才是最合适的呢?
VQ的又一技巧:给编码表加一个线性变换
By 苏剑林 | 2024-11-06 | 6402位读者 | 引用在《VQ的旋转技巧:梯度直通估计的一般推广》中,我们介绍了VQ(Vector Quantization)的Rotation Trick,它的思想是通过推广VQ的STE(Straight-Through Estimator)来为VQ设计更好的梯度,从而缓解VQ的编码表坍缩、编码表利用率低等问题。
无独有偶,昨天发布在arXiv上的论文《Addressing Representation Collapse in Vector Quantized Models with One Linear Layer》提出了改善VQ的另一个技巧:给编码表加一个线性变换。这个技巧单纯改变了编码表的参数化方式,不改变VQ背后的理论框架,但实测效果非常优异,称得上是简单有效的经典案例。
VQ的旋转技巧:梯度直通估计的一般推广
By 苏剑林 | 2024-10-24 | 10043位读者 | 引用随着多模态LLM的方兴未艾,VQ(Vector Quantization)的地位也“水涨船高”,它可以作为视觉乃至任意模态的Tokenizer,将多模态数据统一到自回归生成框架中。遗憾的是,自VQ-VAE首次提出VQ以来,其理论并没有显著进步,像编码表的坍缩或利用率低等问题至今仍亟待解决,取而代之的是FSQ等替代方案被提出,成为了VQ有力的“竞争对手”。
然而,FSQ并不能在任何场景下都替代VQ,所以VQ本身的改进依然是有价值的。近日笔者读到了《Restructuring Vector Quantization with the Rotation Trick》,它提出了一种旋转技巧,声称能改善VQ的一系列问题,本文就让我们一起来品鉴一下。
回顾
早在五年前的博文《VQ-VAE的简明介绍:量子化自编码器》中我们就介绍过了VQ-VAE,后来在《简单得令人尴尬的FSQ:“四舍五入”超越了VQ-VAE》介绍FSQ的时候,也再次仔细地温习了VQ-VAE,还不了解的读者可以先阅读这两篇文章。
Cool Papers浏览器扩展升级至v0.2.0
By 苏剑林 | 2024-10-16 | 9665位读者 | 引用年初,我们在《更便捷的Cool Papers打开方式:Chrome重定向扩展》中发布了一个Chrome浏览器插件(Cool Papers Redirector v0.1.0),可以通过右击菜单从任意页面中重定向到Cool Papers中,让大家更方便地获取Kimi对论文的理解。前几天我们把该插件升级到了v0.2.0,并顺利上架到了Chrome应用商店中,遂在此向大家推送一下。
更新汇总
相比旧版v0.1.0,当前版v0.2.0的主要更新内容如下:
1、右键菜单跳转改为在新标签页打开;
2、右键菜单支持同时访问多个论文ID;
3、右键菜单支持PDF页面;
4、右键菜单新增更多论文源(arXiv、OpenReview、ACL、IJCAI、PMLR);
5、右键菜单在搜索不到论文ID时,转入站内搜索(即划词搜索);
6、在某些网站的适当位置插入快捷跳转链接(arXiv、OpenReview,ACL)。
让MathJax的数学公式随窗口大小自动缩放
By 苏剑林 | 2024-10-15 | 7784位读者 | 引用随着MathJax的出现和流行,在网页上显示数学公式便逐渐有了标准答案。然而,MathJax(包括其竞品KaTeX)只是负责将网页LaTeX代码转化为数学公式,对于自适应分辨率方面依然没有太好的办法。像本站一些数学文章,因为是在PC端排版好的,所以在PC端浏览效果尚可,但转到手机上看就可能有点难以入目了。
经过测试,笔者得到了一个方案,让MathJax的数学公式也能像图片一样,随着窗口大小而自适应缩放,从而尽量保证移动端的显示效果,在此跟大家分享一波。
背景思路
这个问题的起源是,即便在PC端进行排版,有时候也会遇到一些单行公式的长度超出了网页宽度,但又不大好换行的情况,这时候一个解决方案是用HTML代码手动调整一下公式的字体大小,比如
<span style="font-size:90%">
\begin{equation}一个超长的数学公式\end{equation}
</span>
“闭门造车”之多模态思路浅谈(三):位置编码
By 苏剑林 | 2024-09-06 | 32589位读者 | 引用在前面的文章中,我们曾表达过这样的观点:多模态LLM相比纯文本LLM的主要差异在于,前者甚至还没有形成一个公认为标准的方法论。这里的方法论,不仅包括之前讨论的生成和训练策略,还包括一些基础架构的设计,比如本文要谈的“多模态位置编码”。
对于这个主题,我们之前在《Transformer升级之路:17、多模态位置编码的简单思考》就已经讨论过一遍,并且提出了一个方案(RoPE-Tie)。然而,当时笔者对这个问题的思考仅处于起步阶段,存在细节考虑不周全、认识不够到位等问题,所以站在现在的角度回看,当时所提的方案与完美答案还有明显的距离。
因此,本文我们将自上而下地再次梳理这个问题,并且给出一个自认为更加理想的结果。
多模位置
多模态模型居然连位置编码都没有形成共识,这一点可能会让很多读者意外,但事实上确实如此。对于文本LLM,目前主流的位置编码是RoPE(RoPE就不展开介绍了,假设读者已经熟知),更准确来说是RoPE-1D,因为原始设计只适用于1D序列。后来我们推导了RoPE-2D,这可以用于图像等2D序列,按照RoPE-2D的思路我们可以平行地推广到RoPE-3D,用于视频等3D序列。
Decoder-only的LLM为什么需要位置编码?
By 苏剑林 | 2024-09-01 | 26253位读者 | 引用众所周知,目前主流的LLM,都是基于Causal Attention的Decoder-only模型(对此我们在《为什么现在的LLM都是Decoder-only的架构?》也有过相关讨论),而对于Causal Attention,已经有不少工作表明它不需要额外的位置编码(简称NoPE)就可以取得非平凡的结果。然而,事实是主流的Decoder-only LLM都还是加上了额外的位置编码,比如RoPE、ALIBI等。
那么问题就来了:明明说了不加位置编码也可以,为什么主流的LLM反而都加上了呢?不是说“多一事不如少一事”吗?这篇文章我们从三个角度给出笔者的看法:
1、位置编码对于Attention的作用是什么?
2、NoPE的Causal Attention是怎么实现位置编码的?
3、NoPE实现的位置编码有什么不足?
最近评论