19 Jun

向量结合复数:常曲率曲线(1)

在之前的一篇向量系列的文章中,我们通过结合物理与向量来巧妙地推导出了曲线(包括平面和空间的)的曲率半径为
$$R=\frac{v^2}{a_c}=\frac{|\dot{\vec{r}}|^3}{|\dot{\vec{r}}\times \ddot{\vec{r}}|}\tag{1}$$
曲率则是曲率半径的导数:$\rho=\frac{1}{R}$。我们反过来思考一下:曲率恒定的平面曲线是否只有圆?

答案貌似是很显然的,我们需要证明一下。

由于只是考虑平面情况,我们先设$\dot{\vec{r}}=(v cos\theta,v sin\theta)=z=ve^{i\theta}$,代入(1)得到
$\frac{\dot{\theta}}{v}=\rho$————(2)

点击阅读全文...

26 Jun

cos 1°的根式表达式

BoJone记得自己第一次接触三角函数大概是小学五、六年级的时候,那时候我拿来了表姐的初中数学书来看。看到三角函数一章后,饶有兴致,希望能够找到一个根据角度来求三角函数值的方法,可是书本上只是教我去用计算器算和查表,这让我这个爱好计算的孩子大失所望。这个问题直到高一才得以解决,原来这已经涉及到了微积分中的泰勒级数了...

我记得为了求任意角度的三角函数值,我曾经根据30°、45°和60°的正弦值拟合过一条近似公式出来:
$$\sin A \approx \sqrt{\frac{A}{60}-1/4}$$

其中A以角度为单位,大致适用于25°~60°,精度好像有两位小数。当然,这个结果在今天看来是很粗糙的,但是这毕竟是我的“小学的作品”!在此留念一翻。

点击阅读全文...

6 Jul

科学空间:2011年7月重要天象

2010.07.01-日偏食(点击打开大图)

2010.07.01-日偏食(点击打开大图)

夏季,我国许多地方阴雨连绵,晴天较少,再加上昼长夜短,因此这段时间可谓是天文观测的淡季。7月的精彩天象也不多,除一次与我国无关的日偏食之外,就是观测条件差强人意的水星东大距了。当然,如果你对观测人造天体感兴趣的话,本月仍可能有进行国际空间站马拉松的机会。不管怎样,希望大家心中探索天文的那股激情永远不会消失^_^

点击阅读全文...

19 Jul

一道整数边三角形题目

这是一道来自“数联天地”的题目:

三边长均为整数的三角形,周长为1000,其中一个内角是另外一个内角的两倍。求三边长度

咋看上去这是一道几何题目,但实际上这是一道初等数论题,而且主要是不定方程问题。类似的题目在数学竞赛中其实有可能出到,在这里和大家探讨一番。话说回来,其实笔者小时候很喜欢数论方面的内容的,在小学和初中,经常围绕着“素数”、“完全数”、“亲和数”、“大数分解”等等名词钻研看书。现在学习了微积分等内容之后,兴趣逐渐转向了实用性较强的数学,因而数论内容的水平不高,大家见笑了。

点击阅读全文...

22 Jul

三角函数幂的积分

昨天在研究一个最优化问题时,遇到了一个这样的积分:
$$\int \frac{1}{\cos^3 \theta} d\theta$$

然后就顺便研究了一下这种类型的函数的积分。一般来讲,这类积分可以写成$\int cos^n \theta d\theta$或$\int sin^n \theta d\theta$,其中n是一个整数。

首先我们来解决n=1的情况,我们很容易就有$\int cos\theta d\theta=sin\theta +C$或$\int sin\theta d\theta=-cos\theta +C$,这是一个基本的结果。

如果n是大于1的正整数,那么可以用递推的方法来搞定:

点击阅读全文...

25 Jul

关于e,i,π的那些鲜为人知的事儿...

科学空间曾经提到过$e^{i\pi}+1=0$这条被誉为“数学最卓越的公式的公式之一”的公式,而读者们或许很就之前就已经听说过甚至证明过它了。那么,各位读者是否还知道其他的一些关于e,i,π的轶事呢?例如你知道$i^i$等于多少吗?还有$i^{1//i}$呢?

本文就让我们来欣赏一次数学之美!

点击阅读全文...

25 Jul

收谷问题(1)

在农村,7月是忙碌的月份,农民们要忙着收割稻谷,收割完后要晒谷,同时还得准备“下秧”,准备新一轮的耕,BoJone家自然也不例外。不过我家田比较少(1亩左右),收割机几分钟搞定,谷也三两天就晒完了。不过在晒谷的时候,BoJone在考虑一个“收谷”问题:

晒谷时得先把成堆的谷子摊开,薄薄地平铺在平地上,等到傍晚或即将下雨时(这是最惨的情况,搞不好会淋谷)就将其收起来。问题就源于这里,一般来说我们会把谷均匀地铺成矩形,要把所有的谷都推到矩形里或外的哪一点上,才使得我们做功做小?

这个问题还可以推广开来,例如对于一地任意形状的谷子(如三角形),把它集中堆到哪个点最“轻松”?一堆固定质量的谷子,要把它平铺成什么形状,才使得收谷时最“轻松”?当然,这个问题的解不仅仅用于“收谷”,在很多规划建设中也可以应用到,例如要在一个人口大致均匀的城市中建设一个服务中心,这个服务中心应该建在哪里?这有点类似于我们之前讨论过的费马点问题 ,都是费马点只考虑了三个点的距离,而这个问题得考虑所有点的距离。

点击阅读全文...

13 Aug

对称多项式不等式的“物理证明”

本文将再次谈到对称这个话题,不过这一次的对象不是“等式”,而是“不等式”。

在数学研究中,我们经常会遇到各种各样的函数式子,其中有相当一部分是“对称”的。什么是对称的函数呢?对称有很多种说法,但是针对于多元对称式,我们的定义为满足$f(x_1,x_2,...,x_n)=f(y_1,y_2,...,y_n)$的函数,其中$(y_1,y_2,...,y_n)$是$(x_1,x_2,...,x_n)$的任意一个排列。通俗来讲,就是将式子中任意两个未知数交换位置,得到的式子还是和原来的式子一样。例如$\sin x+\sin y$,把$x,y$交换位置后得到$\sin y+\sin x$,还是和原来的一样;再如$xy+yz+zx$,将y,z互换后可以得到$xz+zy+yx$,结果还是和原式一样;等等。有些对称的函数是一个n次的多项式,那么就叫它为n次对称多项式,上边的例子$xz+zy+yx$就是一个三元二次对称多项式。

点击阅读全文...