农村的孩子免不了常做家务,当然我家也没有什么特别沉重的家务,通常都是扫地、做饭、洗菜这些简单的活儿。说到洗菜,洗完菜后总喜欢边放水边搅水,然后就在水面上形成一个颇为有趣的漩涡。现在我们从数学物理的角度来分析一下这个漩涡。
在讲洗手盆的漩涡之前,我们先来看一下一个比较类似的、更古老的问题——牛顿的旋转液面问题。牛顿假设有一个水桶(假设为圆柱形吧,但这不重要),水桶在绕自己的中轴线匀角速度旋转,直到桶内的水也随着匀角速度旋转(即水与水桶相对静止),此时水的液面形状是凹的,我们来看看该液面的形状。
牛顿的水桶
要分析形状,我们还要回顾之前提到过的流体静力学平衡:
http://kexue.fm/archives/1964/
《虚拟的实在(4)》——质量是什么
By 苏剑林 | 2013-07-22 | 56556位读者 | 引用笔者很少会谈到定义性的东西,原因很简单,因为我也不见得会比大家清楚,或者说也未必比大家所知道的准确。不过,刚刚与同好讨论过与质量相关的问题,就跟大家分享一下。
最初的问题是能量能不能转化为物质,我觉得根据$E=mc^2$,是显然可以的,例子嘛,我首先想到在量子场论中的真空是会不断产生和湮灭正负电子对的,因此这可以作为一个证据。但是这个感觉上太遥远了,所以我在互联网搜索了一下,不过搜到的内容大同小异:
当辐射光子能量足够高时,在它从原子核旁边经过时,在核库仑场作用下,辐射光子可能转化成一个正电子和一个负电子,这种过程称作电子对效应。
(正负电子对效应)
【翻译】星空之夜:夏季恒星的色彩
By 苏剑林 | 2013-07-25 | 31807位读者 | 引用暑假结束了,上学去~
By 苏剑林 | 2013-08-31 | 21943位读者 | 引用一个多月的暑假已经结束了,又回到了学校来。准确地说,昨天已经来到了学校,只是着搞卫生、社团等工作,无暇到blog上写点什么。早晨起来,一时无聊,就随便唠叨几句。
暑假就这样过去了,这也意味着大一完全过去了,我已经成为了师兄。曾不止一次感叹“光阴似箭,日月如梭”,而我越发地体味到这一点。不少人到了大学之后才明白高中生活的美好,而我有点不同,我在高中已经懂得大学并没有我们想象中的完美,所以我对大学和高中都抱有同样的眷恋和期待。大一过去了,从外边看来,我唯一的变化就是瘦了,沧桑了吧。还记得时隔一年的体检,我的体重居然少了十斤,以至于让我不得不怀疑那个秤的准确性;还记得多少次被小孩子喊做“叔叔”,被师兄称作“师兄”......
[欧拉数学]找出严谨的答案
By 苏剑林 | 2013-09-09 | 19332位读者 | 引用在之前的一些文章中,我们已经谈到过欧拉数学。总体上来讲,欧拉数学就是具有创造性的、直觉性的技巧和方法,这些方法能够推导出一些漂亮的结果,而方法本身却并不严密。然而,在很多情况下,严密与直觉只是一步之遥。接下来要介绍的是我上学期《数学分析》期末考的一道试题,而我解答这道题的灵感来源便是“欧拉数学”。
数列${a_n}$是递增的正数列,求证:$\sum\limits_{n=1}^{\infty}\left(1-\frac{a_n}{a_{n+1}}\right)$收敛等价于${a_n}$收敛。
据说参考答案给出的方法是利用数列的柯西收敛准则,我也没有仔细去看,我在探索自己的更富有直觉型的方法。这就是所谓的“I do not understand what I can not create.”。下面是我的思路。
数学基本技艺之23、24(上)
By 苏剑林 | 2013-09-26 | 16212位读者 | 引用数学基本技艺之23、24(下)
By 苏剑林 | 2013-09-27 | 24153位读者 | 引用在上一篇文章中我们得到了第23题的解,本来想接着类似地求第24题,但是看着23题的答案,又好像发现了一些新的东西,故没有继续写下去。等到今天在课堂上花了一节课研究了一下之后,得到了关于这种拟齐次微分方程的一些新的结果,遂另开一篇新文章,与大家分享。
一、特殊拟齐次微分方程的通解
在上一篇文章中,我们求出了拟齐次微分方程$\frac{dy}{dx}=x+\frac{x^3}{y}$的解:
$$(2y+x^2)(x^2-y)^2=C$$
或者写成这样的形式:
$$(y+\frac{1}{2} x^2)(y-x^2)^2=C$$
月底回家看彗星C/2012 S1 (ISON)
By 苏剑林 | 2013-11-01 | 23320位读者 | 引用今年的天象中的“重头戏”——C/2012 S1 (ISON)彗星将在月底闪亮登场!
先贴出来自scully.cfa.harvard.edu的数据:
Date TT R. A. (2000) Decl. Delta r Elong. Phase m1 m2
2013 11 24 14 45 42.7 -18 53 56 0.8693 0.3002 17.1 104.3 3.0
2013 11 25 15 01 27.3 -20 05 10 0.8819 0.2551 14.3 107.0 2.5
2013 11 26 15 18 04.6 -21 09 58 0.8998 0.2058 11.4 109.3 1.8
2013 11 27 15 35 58.3 -22 05 30 0.9244 0.1502 8.2 110.4 0.7
2013 11 28 15 56 28.2 -22 43 29 0.9594 0.0826 4.6 106.9 -1.3
2013 11 29 16 23 17.5 -19 52 57 0.9762 0.0322 1.8 107.7 -4.5
2013 11 30 16 21 22.4 -16 20 32 0.9125 0.1145 5.3 127.4 -0.2
2013 12 01 16 19 11.8 -13 59 07 0.8681 0.1757 8.1 128.1 1.2
2013 12 02 16 17 23.9 -11 56 02 0.8309 0.2281 10.6 127.3 2.0
2013 12 03 16 15 54.3 -10 00 54 0.7980 0.2754 13.0 126.1 2.5
最近评论