25 Apr

当概率遇上复变:解析概率

每当看到数学的两个看似毫不相关的分支巧妙地联系了起来时,我总会为数学的神奇美丽惊叹不已。在很久以前,当我看到通过生成函数法把数论问题与复变函数方法结合起来,衍生出一门奇妙的“解析数论”时,我就惊叹过生成函数法的漂亮!可惜,一直都没有好好写整理这些内容。今天,当我在看李政道先生的《物理学中的数学方法》时,看到他把复变函数跟随机游动如鬼斧神工般了起来,再次让我拍案叫绝。最后实在压抑不住心中的激动,在此写写概率论和生成函数的事情。

数论与复变函数结合,就生成了一门“解析数论”,按照这个说法,概率与复变函数结合,应该就会有一门“解析概率”,但是我在网上搜索的时候,并没有发现这个名词的存在。经过如此,本文还是试用了这个名词。虽然这个名词没有流行,但事实上,解析概率的方法并不算新,它可以追溯到伟大的数学家拉普拉斯以及他的著作《分析概率论》中。尽管如此,这种巧妙漂亮的方法似乎没有得到大家应该有的充分的认识。

我觉得,即使作为一个简洁的计算工具,生成函数法这个美丽的技巧,也应该尽可能为科学爱好者所知,更不用说数学专业的朋友了。

点击阅读全文...

25 Apr

傅里叶变换:只需要异想天开?

在对数学或物理进行事后分析,往往会发现一些奇怪的现象,也有可能得到一些更为深刻有趣的结果。比如本文所要谈及的傅里叶变换,可以由一种“异想天开”的思路得来。

洛朗展式

我们知道,在原点处形态良好的函数,可以展开为泰勒级数
$$f(x)=\sum_{n=0}^{\infty}a_n x^n$$
我们发现,上面的幂都是正的,为什么不能包含$x$的负数次幂呢?比如$\frac{\sin z}{z^2}$展开为
$$\frac{1}{z}-\frac{z}{6}+\frac{z^3}{120}\dots$$
显然也是一件合理的事情。于是,结合复变函数,我们得到解析函数的洛朗展式
$$f(z)=\sum_{n=-\infty}^{+\infty}a_n z^n$$
这是函数的双边展开。其中

点击阅读全文...

30 Apr

当概率遇上复变:随机游走基本公式

笔者发现,有很多概率问题,尤其是独立重复实验问题,如果用生成函数的方法来做,会显得特别方便。本文要讲的“随机游走”问题便是其中一例,它又被形象地叫做“醉汉问题”,其本质上是一个二项分布,但是由于取了极限,出现了很多新的性质和应用。我们先考虑如下问题:

考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每过一秒,它要不向前移动一格(+1),要不就向后移动一格(-1),问$n$秒后它所处位置的概率分布。

点击阅读全文...

4 May

[问题解答]运煤车的最大路程(更正)

刚刚在浏览卢昌海大师的微博时,发现他微博上有一道比较有趣的题目,于是饶有兴致地思考了一翻,构思了一个答案,希望读者们看看这个答案有问题不?

五一”长假微博很闷,出一道题给博友们解闷:

用重载列车运煤,每次可装1万吨,每行驶1公里耗煤1吨,起点处共有N万吨煤(简单起见N为正整数),请问最远可运至何处(是国营煤老板,成本不计,只要运到的数量大于0就算成功)?并求$N\to\infty$时的渐进形式。

点击阅读全文...

10 Jun

两百万前素数之和与前两百万素数之和

标题说了两道比较好玩的编程题,如果读者觉得标题绕的让人眩晕的话,那么让我再说得清晰一点:

两百万前素数之和指的是所有不超过两百万的素数的和;
前两百万素数之和指的是前两百万个素数的和。

我是从子谋的blog中看到这道题目的,前一道题目是Project Euler的第10题,后一道则是我跟子谋探索着玩的。关于子谋的研究和代码,大家可以去他的blog上学习。本文分享一下我自己的想法。

点击阅读全文...

15 Jul

《新理解矩阵6》:为什么只有方阵有行列式?

学过线性代数的朋友都知道,方阵和非方阵的一个明显不同是,对于方阵我们可以计算它的行列式,如果不是方阵的话,就没有行列式这个概念了。在追求统一和谐的数学系统中,为什么非方阵却没有行列式?也许对于这个问题最恰当的回答是——因为不够美。对于非方阵,其实也可以类似地定义它的行列式,定义出来的东西,跟方阵的行列式具有同样的性质,比如某行乘上一个常数,行列式值也就乘以一个常数,等等;而且还可以把其几何意义保留下来。但是,非方阵的行列式是不够美的,因为对于一个一般的整数元素的方阵,我们的行列式是一个整数;而对于一个一般的整数元素的非方阵,却导致了一个无理数的行列式值。另外,一个也比较重要的原因是,单单是方阵的行列式也够用了。综合以上两个理由,非方阵的行列式就被舍弃不用了。

非方阵的行列式不够漂亮

$n$阶方阵的行列式是每个向量的线性函数,它代表着向量之间的线性相关性;从几何上来讲,它就是向量组成的平行n维体的(有向)体积。我们当然期望非方阵的行列式也保留这些性质,因为只有这样,方阵行列式的那些运算性质才得以保留,比如上面说的,行列式的一行乘上一个常数,行列式值也乘上一个常数。我们考虑$m\times n$的矩阵,其中$ m < n $,我们将它看成是$m$个$n$维向量的组合。最简单的,我们先考虑$1\times 2$矩阵的行列式,也就是二维向量$(a,b)$的行列式。

点击阅读全文...

1 Jul

勾股数的通解及其推广

在之前的文章《几何的数与数的几何:超复数的浅探究》中,我们谈及过四元数。四元数源于把复数的$|(a+bi)(c+di)|=|a+bi|\times|c+di|$这一独特的性质进行高维推广。为什么偏爱这一性质?读者或许已经初步知道一些用到复数的这一性质的例子,有几何方面的,也有物理方面的,这一性质为处理模长相关问题带来了美妙的方便。本文介绍它在求三元二次齐次不定方程的整数通解中的应用,这一例子同样展示了复数这一性质的神奇,让我们不得不认同当初哈密顿为了将其推广到高维而不惜耗费十年光阴的努力。

勾股数问题

读者或许已经知道,勾股数,也就是满足
$$x^2+y^2=z^2$$
的所有自然数解,由下面公式给出
$$x=a^2-b^2,\quad y=2ab,\quad z=a^2+b^2$$

点击阅读全文...

15 Aug

从费马大定理谈起(二):勾股数

费马大定理说的是$n > 2$的情况,但是我们可以从$n=2$出发,求解到勾股数组的一般表达式,并且从中得到证明费马大定理的原始思想。

互质解

我们在实整数,也就是$\mathbb{Z}$内求解。为了求解不定方程$x^2+y^2=z^2$,首先我们注意到,这是一道齐次方程,这告诉我们,如果存在某一组解,那么可以通过同除以公约数的方法,得到一组两两互质的解。换句话说,有解必有互质解,这是$x^n+y^n=z^n$的解的通性。那么,我们假设$(x,y,z)=(a,b,c)$ 是方程$x^2+y^2=z^2$的一个互质解。

点击阅读全文...