13 Nov

也来谈谈RNN的梯度消失/爆炸问题

尽管Transformer类的模型已经攻占了NLP的多数领域,但诸如LSTM、GRU之类的RNN模型依然在某些场景下有它的独特价值,所以RNN依然是值得我们好好学习的模型。而对于RNN梯度的相关分析,则是一个从优化角度思考分析模型的优秀例子,值得大家仔细琢磨理解。君不见,诸如“LSTM为什么能解决梯度消失/爆炸”等问题依然是目前流行的面试题之一...

经典的LSTM

经典的LSTM

关于此类问题,已有不少网友做出过回答,然而笔者查找了一些文章(包括知乎上的部分回答、专栏以及经典的英文博客),发现没有找到比较好的答案:有些推导记号本身就混乱不堪,有些论述过程没有突出重点,整体而言感觉不够清晰自洽。为此,笔者也尝试给出自己的理解,供大家参考。

点击阅读全文...

24 Nov

exp(x)在x=0处的偶次泰勒展开式总是正的

刚看到一个有意思的结论:

对于任意实数$x$及偶数$n$,总有$\sum\limits_{k=0}^n \frac{x^k}{k!} > 0$,即$e^x$在$x=0$处的偶次泰勒展开式总是正的。

下面我们来看一下这个结论的证明,以及它在寻找softmax替代品中的应用。

证明过程

看上去这是一个很强的结果,证明会不会很复杂?其实证明非常简单,记
\begin{equation}f_n(x) = \sum\limits_{k=0}^n \frac{x^k}{k!}\end{equation}
当$n$是偶数时,我们有$\lim\limits_{x\to\pm\infty} f_n(x)=+\infty$,即整体是开口向上的,所以我们只需要证明它的最小值大于0就行了,又因为它是一个光滑连续的多项式函数,所以最小值点必然是某个极小值点。那么换个角度想,我们只需要证明它所有的极值点(不管是极大还是极小)所对应的函数值都大于0。

点击阅读全文...

14 Jan

【搜出来的文本】⋅(二)从MCMC到模拟退火

在上一篇文章中,我们介绍了“受限文本生成”这个概念,指出可以通过量化目标并从中采样的方式来无监督地完成某些带条件的文本生成任务。同时,上一篇文章还介绍了“重要性采样”和“拒绝采样”两个方法,并且指出对于高维空间而言,它们所依赖的易于采样的分布往往难以设计,导致它们难以满足我们的采样需求。

此时,我们就需要引入采样界最重要的算法之一“Markov Chain Monte Carlo(MCMC)”方法了,它将马尔可夫链和蒙特卡洛方法结合起来,使得(至少理论上是这样)我们从很多高维分布中进行采样成为可能,也是后面我们介绍的受限文本生成应用的重要基础算法之一。本文试图对它做一个基本的介绍。

马尔可夫链

马尔可夫链实际上就是一种“无记忆”的随机游走过程,它以转移概率$p(\boldsymbol{y}\leftarrow\boldsymbol{x})$为基础,从一个初始状态$\boldsymbol{x}_0$出发,每一步均通过该转移概率随机选择下一个状态,从而构成随机状态列$\boldsymbol{x}_0, \boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_t, \cdots $,我们希望考察对于足够大的步数$t$,$\boldsymbol{x}_t$所服从的分布,也就是该马尔可夫链的“平稳分布”。

点击阅读全文...

9 Feb

果蝇(图片来自Google搜索)

果蝇(图片来自Google搜索)

可能有些读者最近会留意到ICLR 2021的论文《Can a Fruit Fly Learn Word Embeddings?》,文中写到它是基于仿生思想(仿果蝇的嗅觉回路)做出来的一个二值化词向量模型。其实论文的算法部分并不算难读,可能整篇论文读下来大家的最主要疑惑就是“这东西跟果蝇有什么关系?”、“作者真是从果蝇里边受到启发的?”等等。本文就让我们来追寻一下该算法的来龙去脉,试图回答一下这个词向量模型是怎么跟果蝇搭上关系的。

BioWord

原论文并没有给该词向量模型起个名字,为了称呼上的方便,这里笔者就自作主张将其称为“BioWord”了。总的来说,论文内容大体上有三部分:

1、给每个n-gram构建了一个词袋表示向量;

2、对这些n-gram向量执行BioHash算法,得到所谓的(二值化的)静态/动态词向量;

3、“拼命”讲了一个故事。

点击阅读全文...

26 Jan

Seq2Seq重复解码现象的理论分析尝试

去年笔者写过博文《如何应对Seq2Seq中的“根本停不下来”问题?》,里边介绍了一篇论文中对Seq2Seq解码不停止现象的处理,并指出那篇论文只是提了一些应对该问题的策略,并没有提供原理上的理解。近日,笔者在Arixv读到了AAAI 2021的一篇名为《A Theoretical Analysis of the Repetition Problem in Text Generation》的论文,里边从理论上分析了Seq2Seq重复解码现象。从本质上来看,重复解码和解码不停止其实都是同理的,所以这篇新论文算是填补了前面那篇论文的空白。

经过学习,笔者发现该论文确实有不少可圈可点之处,值得一读。笔者对原论文中的分析过程做了一些精简、修正和推广,将结果记录成此文,供大家参考。此外,抛开问题背景不讲,读者也可以将本文当成一节矩阵分析习题课,供大家复习线性代数哈~

点击阅读全文...

8 Jul

两个多元正态分布的KL散度、巴氏距离和W距离

正态分布是最常见的连续型概率分布之一。它是给定均值和协方差后的最大熵分布(参考《“熵”不起:从熵、最大熵原理到最大熵模型(二)》),也可以看作任意连续型分布的二阶近似,它的地位就相当于一般函数的线性近似。从这个角度来看,正态分布算得上是最简单的连续型分布了。也正因为简单,所以对于很多估计量来说,它都能写出解析解来。

本文主要来计算两个多元正态分布的几种度量,包括KL散度、巴氏距离和W距离,它们都有显式解析解。

正态分布

这里简单回顾一下正态分布的一些基础知识。注意,仅仅是回顾,这还不足以作为正态分布的入门教程。

概率密度

正态分布,也即高斯分布,是定义在$\mathbb{R}^n$上的连续型概率分布,其概率密度函数为
\begin{equation}p(\boldsymbol{x})=\frac{1}{\sqrt{(2\pi)^n \det(\boldsymbol{\Sigma})}}\exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}\end{equation}

点击阅读全文...

1 Jul

又是Dropout两次!这次它做到了有监督任务的SOTA

关注NLP新进展的读者,想必对四月份发布的SimCSE印象颇深,它通过简单的“Dropout两次”来构造正样本进行对比学习,达到了无监督语义相似度任务的全面SOTA。无独有偶,最近的论文《R-Drop: Regularized Dropout for Neural Networks》提出了R-Drop,它将“Dropout两次”的思想用到了有监督任务中,每个实验结果几乎都取得了明显的提升。此外,笔者在自己的实验还发现,它在半监督任务上也能有不俗的表现。

R-Drop示意图

R-Drop示意图

小小的“Dropout两次”,居然跑出了“五项全能”的感觉,不得不令人惊讶。本文来介绍一下R-Drop,并分享一下笔者对它背后原理的思考。

点击阅读全文...

25 Feb

“用词造句”是小学阶段帮助我们理解和运用词语的一个经典任务,从自然语言处理的角度来看,它是一个句子扩写或者句子补全任务,它其实要求我们具有不定向地进行文本生成的能力。然而,当前主流的语言模型都是单方向生成的(多数是正向的,即从左往右,少数是反向的,即从右往左),但用词造句任务中所给的若干个词未必一定出现在句首或者句末,这导致无法直接用语言模型来完成造句任务。

本文我们将介绍论文《CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling》,它使用MCMC采样使得单向语言模型也可以做到不定向生成,通过增、删、改操作模拟了人的写作润色过程,从而能无监督地完成用词造句等多种文本生成任务。

问题设置

无监督地进行文本采样,那么直接可以由语言模型来完成,而我们同样要做的,是往这个采样过程中加入一些信号$\boldsymbol{c}$,使得它能生成我们期望的一些文本。在本系列第一篇文章《【搜出来的文本】⋅(一)从文本生成到搜索采样》的“明确目标”一节中,我们就介绍了本系列的指导思想:把我们要寻找的目标量化地写下来,然后最大化它或者从中采样。

点击阅读全文...