几年前,笔者曾经以自己对矩阵的粗浅理解写了一个“理解矩阵”系列,其中有一篇《为什么只有方阵有行列式?》讨论了非方阵的行列式问题,里边给出了“非方针的行列式不好看”和“方阵的行列式就够了”的观点。本文来再次思考这个问题。
首先回顾方阵的行列式,其实行列式最重要的价值在于它的几何意义:
n维方阵的行列式的绝对值,等于它的各个行(或列)向量所张成的n维立体的超体积。
这个几何意义是行列式的一切重要性的源头,相关的讨论可以参考《行列式的点滴》,它也是我们讨论非方阵行列式的基础。
分析
对于方阵$\boldsymbol{A}_{n\times n}$来说,可以将它看成$n$个行向量的组合,也可以看成$n$个列向量的组合,不管是哪一种,行列式的绝对值都等于这$n$个向量所张成的$n$维立体的超体积。换句话说,对于方阵来说,行、列向量的区分不改变行列式。
对于非方阵$\boldsymbol{B}_{n \times k}$就不一样了,不失一般性,假设$n > k$。我们可以将它看成$n$个$k$维行向量的组合,也可以看成$k$个$n$维列向量的组合。非方针的行列式,应该也具有同样含义,即它们所张成的立体的超体积。
我们来看第一种情况,如果看成$n$个$k$维行向量,那么就得视为这$n$个向量张成的$n$维体的超体积了,但是要注意$n > k$,因此这$n$个向量必然线性相关,因此它们根本就张不成一个$n$维体,也许是一个$n-1$维体甚至更低,这样一来,它的$n$维体的超体积自然为0。
但是第二种情况就没有那么平凡了。如果看成$k$个$n$维列向量,那么这$k$个向量虽然是$n$维的,但它们张成的是一个$k$维体,这$k$维体的超体积未必为0。我们就以这个非平凡的体积作为非方阵行列式的定义好了。
Dropout视角下的MLM和MAE:一些新的启发
By 苏剑林 | 2021-11-29 | 72356位读者 | 引用大家都知道,BERT的MLM(Masked Language Model)任务在预训练和微调时的不一致,也就是预训练出现了[MASK]而下游任务微调时没有[MASK],是经常被吐槽的问题,很多工作都认为这是影响BERT微调性能的重要原因,并针对性地提出了很多改进,如XL-NET、ELECTRA、MacBERT等。本文我们将从Dropout的角度来分析MLM的这种不一致性,并且提出一种简单的操作来修正这种不一致性。
同样的分析还可以用于何凯明最近提出的比较热门的MAE(Masked Autoencoder)模型,结果是MAE相比MLM确实具有更好的一致性,由此我们可以引出一种可以能加快训练速度的正则化手段。
Dropout
首先,我们重温一下Dropout。从数学上来看,Dropout是通过伯努利分布来为模型引入随机噪声的操作,所以我们也简单复习一下伯努利分布。
BiGAN-QP:简单清晰的编码&生成模型
By 苏剑林 | 2018-12-10 | 65042位读者 | 引用前不久笔者通过直接在对偶空间中分析的思路,提出了一个称为GAN-QP的对抗模型框架,它的特点是可以从理论上证明既不会梯度消失,又不需要L约束,使得生成模型的搭建和训练都得到简化。
GAN-QP是一个对抗框架,所以理论上原来所有的GAN任务都可以往上面试试。前面《不用L约束又不会梯度消失的GAN,了解一下?》一文中我们只尝试了标准的随机生成任务,而这篇文章中我们尝试既有生成器、又有编码器的情况:BiGAN-QP。
BiGAN与BiGAN-QP
注意这是BiGAN,不是前段时间很火的BigGAN,BiGAN是双向GAN(Bidirectional GAN),提出于《Adversarial feature learning》一文,同期还有一篇非常相似的文章叫做《Adversarially Learned Inference》,提出了叫做ALI的模型,跟BiGAN差不多。总的来说,它们都是往普通的GAN模型中加入了编码器,使得模型既能够具有普通GAN的随机生成功能,又具有编码器的功能,可以用来提取有效的特征。把GAN-QP这种对抗模式用到BiGAN中,就得到了BiGAN-QP。
话不多说,先来上效果图(左边是原图,右边是重构):
RSGAN:对抗模型中的“图灵测试”思想
By 苏剑林 | 2018-10-22 | 125538位读者 | 引用这两天无意间发现一个非常有意义的工作,称为“相对GAN”,简称RSGAN,来自文章《The relativistic discriminator: a key element missing from standard GAN》,据说该文章还得到了GAN创始人Goodfellow的点赞。这篇文章提出了用相对的判别器来取代标准GAN原有的判别器,使得生成器的收敛更为迅速,训练更为稳定。
可惜的是,这篇文章仅仅从训练和实验角度对结果进行了论述,并没有进行更深入的分析,以至于不少人觉得这只是GAN训练的一个trick。但是在笔者来看,RSGAN具有更为深刻的含义,甚至可以看成它已经开创了一个新的GAN流派。所以,笔者决定对RSGAN模型及其背后的内涵做一个基本的介绍。不过需要指出的是,除了结果一样之外,本文的介绍过程跟原论文相比几乎没有重合之处。
“图灵测试”思想
SGAN
SGAN就是标准的GAN(Standard GAN)。就算没有做过GAN研究的读者,相信也从各种渠道了解到GAN的大概原理:“造假者”不断地进行造假,试图愚弄“鉴别者”;“鉴别者”不断提高鉴别技术,以分辨出真品和赝品。两者相互竞争,共同进步,直到“鉴别者”无法分辨出真、赝品了,“造假者”就功成身退了。
在建模时,通过交替训练实现这个过程:固定生成器,训练一个判别器(二分类模型),将真实样本输出1,将伪造样本输出0;然后固定判别器,训练生成器让伪造样本尽可能输出1,后面这一步不需要真实样本参与。
问题所在
然而,这个建模过程似乎对判别器的要求过于苛刻了,因为判别器是孤立运作的:训练生成器时,真实样本没有参与,所以判别器必须把关于真实样本的所有属性记住,这样才能指导生成器生成更真实的样本。
基于CNN和序列标注的对联机器人
By 苏剑林 | 2019-01-14 | 42965位读者 | 引用缘起
前几天在量子位公众号上看到了《这个脑洞清奇的对联AI,大家都玩疯了》一文,觉得挺有意思,难得的是作者还整理并公开了数据集,所以决定自己尝试一下。
动手
“对对联”,我们可以看成是一个句子生成任务,可以用seq2seq完成,跟笔者之前写的《玩转Keras之seq2seq自动生成标题》一样,稍微修改一下输入即可。上面提到的文章所用的方法也是seq2seq,可见这算是标准做法了。
缅怀金庸 | 愿你登上10930小行星继续翱翔
By 苏剑林 | 2018-10-30 | 21797位读者 | 引用金庸走了,享年94岁。
虽然说这些高龄大师们,不管是科学家还是文学家,他们在晚年基本上都不会有什么产出,过于理性的话会有“去了就去了,好像也没有什么损失”的感觉。然而,事实是大师的逝去总让我们有一种悲伤的震撼感,总让我们觉得似乎一个时代又逝去了。霍金是这样,金庸也是这样。
对于金老爷子来说,是一个武侠时代过去了,是一个江湖过去了。
飞雪连天射白鹿,笑书神侠倚碧鸳。
这个对联描述了金庸的14部作品,加上《越女剑》,就构成了他的15部武侠小说。金庸用这15部小说,描述了一个个活灵活现的江湖,不,说江湖好象都太小了,读完这15部作品,你会感觉他描述了整个中国几千年的历史、整个社会。
WGAN-div:一个默默无闻的WGAN填坑者
By 苏剑林 | 2018-11-07 | 154882位读者 | 引用今天我们来谈一下Wasserstein散度,简称“W散度”。注意,这跟Wasserstein距离(Wasserstein distance,简称“W距离”,又叫Wasserstein度量、Wasserstein metric)是不同的两个东西。
本文源于论文《Wasserstein Divergence for GANs》,论文中提出了称为WGAN-div的GAN训练方案。这是一篇我很是欣赏却默默无闻的paper,我只是找文献时偶然碰到了它。不管英文还是中文界,它似乎都没有流行起来,但是我感觉它是一个相当漂亮的结果。
如果读者需要入门一下WGAN的相关知识,不妨请阅读拙作《互怼的艺术:从零直达WGAN-GP》。
WGAN
我们知道原始的GAN(SGAN)会有可能存在梯度消失的问题,因此WGAN横空出世了。
W距离
WGAN引入了最优传输里边的W距离来度量两个分布的距离:
\begin{equation}W_c[\tilde{p}(x), q(x)] = \inf_{\gamma\in \Pi(\tilde{p}(x), q(x))} \mathbb{E}_{(x,y)\sim \gamma}[c(x,y)] \end{equation}
这里的$\tilde{p}(x)$是真实样本的分布,$q(x)$是伪造分布,$c(x,y)$是传输成本,论文中用的是$c(x,y)=\Vert x-y\Vert$;而$\gamma\in \Pi(\tilde{p}(x), q(x))$的意思是说:$\gamma$是任意关于$x, y$的二元分布,其边缘分布则为$\tilde{p}(x)$和$q(y)$。直观来看,$\gamma$描述了一个运输方案,而$c(x,y)$则是运输成本,$W_c[\tilde{p}(x), q(x)]$就是说要找到成本最低的那个运输方案所对应的成本作为分布度量。
最近评论