Transformer升级之路:11、将β进制位置进行到底
By 苏剑林 | 2023-07-31 | 47064位读者 | 引用在文章《Transformer升级之路:10、RoPE是一种β进制编码》中,我们给出了RoPE的$\beta$进制诠释,并基于进制转化的思路推导了能够在不微调的情况下就可以扩展Context长度的NTK-aware Scaled RoPE。不得不说,通过类比$\beta$进制的方式来理解位置编码,确实是一个非常美妙且富有启发性的视角,以至于笔者每次深入思考和回味之时,似乎总能从中得到新的领悟和收获。
本文将重新回顾RoPE的$\beta$进制诠释,并尝试将已有的NTK-aware Scaled RoPE一般化,以期望找到一种更优的策略来不微调地扩展LLM的Context长度。
进制类比
我们知道,RoPE的参数化沿用了Sinusoidal位置编码的形式。而不知道是巧合还是故意为之,整数$n$的Sinusoidal位置编码,与它的$\beta$进制编码,有很多相通之处。
Transformer升级之路:12、无限外推的ReRoPE?
By 苏剑林 | 2023-08-07 | 60296位读者 | 引用自从在《Transformer升级之路:11、将β进制位置进行到底》中引入混合进制的思路进一步推广了NTK-aware Scaled RoPE后,笔者感觉类似思路的效果已经达到了上限,想要更大幅度的提升就必须另辟蹊径了。这时候笔者想起了此前构思过的一个思路,该思路由于复杂度较高所以被搁置下了,既然现在已经遇到了瓶颈,那么“唯一的办法就是最好的办法”,于是便将它重拾起来。
万万没想到的是,尽管该方法增加了一些推理复杂度,但它的实验效果却惊人地好——甚至隐约有无限的长度外推能力!因此,笔者迫不及待地撰写了本文来分享该方法。由于形式上跟ReLU激活函数的相似性,所以笔者将该方法命名为“ReRoPE (Rectified Rotary Position Embeddings)”。
重温
我们知道,RoPE形式上是一种绝对位置编码,但实际上给Attention带来的是相对位置信息,即如下的Toeplitz矩阵:
《为什么现在的LLM都是Decoder-only的架构?》FAQ
By 苏剑林 | 2023-03-20 | 47782位读者 | 引用上周笔者写了《为什么现在的LLM都是Decoder-only的架构?》,总结了一下我在这个问题上的一些实验结论和猜测。果然是热点问题流量大,paperweekly的转发没多久阅读量就破万了,知乎上点赞数也不少。在几个平台上,陆陆续续收到了读者的一些意见或者疑问,总结了其中一些有代表性的问题,做成了本篇FAQ,希望能进一步帮助大家解决疑惑。
回顾
在《为什么现在的LLM都是Decoder-only的架构?》中,笔者对GPT和UniLM两种架构做了对比实验,然后结合以往的研究经历,猜测了如下结论:
1、输入部分的注意力改为双向不会带来收益,Encoder-Decoder架构的优势很可能只是源于参数翻倍;
2、双向注意力没有带来收益,可能是因为双向注意力的低秩问题导致效果下降。
所以,基于这两点推测,我们得到结论:
在同等参数量、同等推理成本下,Decoder-only架构是最优选择。
Google新作试图“复活”RNN:RNN能否再次辉煌?
By 苏剑林 | 2023-03-28 | 56188位读者 | 引用当前,像ChatGPT之类的LLM可谓是“风靡全球”。有读者留意到,几乎所有LLM都还是用最初的Multi-Head Scaled-Dot Attention,近年来大量的Efficient工作如线性Attention、FLASH等均未被采用。是它们版本效果太差,还是根本没有必要考虑效率?其实答案笔者在《线性Transformer应该不是你要等的那个模型》已经分析过了,只有序列长度明显超过hidden size时,标准Attention才呈现出二次复杂度,在此之前它还是接近线性的,它的速度比很多Efficient改进都快,而像GPT3用到了上万的hidden size,这意味着只要你的LLM不是面向数万长度的文本生成,那么用Efficient改进是没有必要的,很多时候速度没提上去,效果还降低了。
那么,真有数万甚至数十万长度的序列处理需求时,我们又该用什么模型呢?近日,Google的一篇论文《Resurrecting Recurrent Neural Networks for Long Sequences》重新优化了RNN模型,特别指出了RNN在处理超长序列场景下的优势。那么,RNN能否再次辉煌?
Bias项的神奇作用:RoPE + Bias = 更好的长度外推性
By 苏剑林 | 2023-04-03 | 39391位读者 | 引用【注:后来经过反复测试发现,发现此篇文章的长度外推结果可复现性比较不稳定(可能跟模型结构、超参数等紧密相关),请自行斟酌使用。】
万万没想到,Bias项能跟Transformer的长度外推性联系在一起!
长度外推性是我们希望Transformer具有的一个理想性质,笔者曾在《Transformer升级之路:7、长度外推性与局部注意力》、《Transformer升级之路:8、长度外推性与位置鲁棒性》系统地介绍过这一问题。至于Bias项(偏置项),目前的主流观点是当模型足够大时,Bias项不会有什么特别的作用,所以很多模型选择去掉Bias项,其中代表是Google的T5和PaLM,我们后面做的RoFormerV2和GAU-α也沿用了这个做法。
那么,这两个看上去“风牛马不相及”的东西,究竟是怎么联系起来的呢?Bias项真的可以增强Transformer的长度外推性?且听笔者慢慢道来。
生成扩散模型漫谈(十九):作为扩散ODE的GAN
By 苏剑林 | 2023-06-24 | 29796位读者 | 引用在文章《生成扩散模型漫谈(十六):W距离 ≤ 得分匹配》中,我们推导了Wasserstein距离与扩散模型得分匹配损失之间的一个不等式,表明扩散模型的优化目标与WGAN的优化目标在某种程度上具有相似性。而在本文,我们将探讨《MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein Gradient Flows》中的研究成果,它进一步展示了GAN与扩散模型之间的联系:GAN实际上可以被视为在另一个时间维度上的扩散ODE!
这些发现表明,尽管GAN和扩散模型表面上是两种截然不同的生成式模型,但它们实际上存在许多相似之处,并在许多方面可以相互借鉴和参考。
思路简介
我们知道,GAN所训练的生成器是从噪声$\boldsymbol{z}$到真实样本的一个直接的确定性变换$\boldsymbol{g}_{\boldsymbol{\theta}}(\boldsymbol{z})$,而扩散模型的显著特点是“渐进式生成”,它的生成过程对应于从一系列渐变的分布$p_0(\boldsymbol{x}_0),p_1(\boldsymbol{x}_1),\cdots,p_T(\boldsymbol{x}_T)$中采样(注:在前面十几篇文章中,$\boldsymbol{x}_T$是噪声,$\boldsymbol{x}_0$是目标样本,采样过程是$\boldsymbol{x}_T\to \boldsymbol{x}_0$,但为了便于下面的表述,这里反过来改为$\boldsymbol{x}_0\to \boldsymbol{x}_T$)。看上去确实找不到多少相同之处,那怎么才能将两者联系起来呢?
从JL引理看熵不变性Attention
By 苏剑林 | 2023-04-10 | 28710位读者 | 引用在《从熵不变性看Attention的Scale操作》、《熵不变性Softmax的一个快速推导》中笔者提出了熵不变性Softmax,简单来说就是往Softmax之前的Attention矩阵多乘上一个$\log n$,理论上有助于增强长度外推性,其中$n$是序列长度。$\log n$这个因子让笔者联系到了JL引理(Johnson-Lindenstrauss引理),因为JL引理告诉我们编码$n$个向量只需要$\mathcal{O}(\log n)$的维度就行了,大家都是$\log n$,这两者有没有什么关联呢?
熵不变性
我们知道,熵是不确定性的度量,用在注意力机制中,我们将它作为“集中注意力的程度”。所谓熵不变性,指的是不管序列长度$n$是多少,我们都要将注意力集中在关键的几个token上,而不要太过分散。为此,我们提出的熵不变性Attention形式为
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{\log_{512} n}{\sqrt{d}}QK^{\top}\right)V\label{eq:core}\end{equation}
如何度量数据的稀疏程度?
By 苏剑林 | 2023-05-05 | 29953位读者 | 引用在机器学习中,我们经常会谈到稀疏性,比如我们经常说注意力矩阵通常是很稀疏的。然而,不知道大家发现没有,我们似乎从没有给出过度量稀疏程度的标准方法。也就是说,以往我们关于稀疏性的讨论,仅仅是直观层面的感觉,并没有过定量分析。那么问题来了,稀疏性的度量有标准方法了吗?
经过搜索,笔者发现确实是有一些可用的指标,比如$l_1/l_2$、熵等,但由于关注视角的不同,在稀疏性度量方面并没有标准答案。本文简单记录一下笔者的结果。
基本结果
狭义上来讲,“稀疏”就是指数据中有大量的零,所以最简单的稀疏性指标就是统计零的比例。但如果仅仅是这样的话,注意力矩阵就谈不上稀疏了,因为softmax出来的结果一定是正数。所以,有必要推广稀疏的概念。一个朴素的想法是统计绝对值不超过$\epsilon$的元素比例,但这个$\epsilon$怎么确定呢?
最近评论