《为什么现在的LLM都是Decoder-only的架构?》FAQ
By 苏剑林 | 2023-03-20 | 44604位读者 | 引用上周笔者写了《为什么现在的LLM都是Decoder-only的架构?》,总结了一下我在这个问题上的一些实验结论和猜测。果然是热点问题流量大,paperweekly的转发没多久阅读量就破万了,知乎上点赞数也不少。在几个平台上,陆陆续续收到了读者的一些意见或者疑问,总结了其中一些有代表性的问题,做成了本篇FAQ,希望能进一步帮助大家解决疑惑。
回顾
在《为什么现在的LLM都是Decoder-only的架构?》中,笔者对GPT和UniLM两种架构做了对比实验,然后结合以往的研究经历,猜测了如下结论:
1、输入部分的注意力改为双向不会带来收益,Encoder-Decoder架构的优势很可能只是源于参数翻倍;
2、双向注意力没有带来收益,可能是因为双向注意力的低秩问题导致效果下降。
所以,基于这两点推测,我们得到结论:
在同等参数量、同等推理成本下,Decoder-only架构是最优选择。
“非自回归”也不差:基于MLM的阅读理解问答
By 苏剑林 | 2019-12-26 | 79335位读者 | 引用万能的seq2seq:基于seq2seq的阅读理解问答
By 苏剑林 | 2019-12-05 | 83573位读者 | 引用今天给bert4keras新增加了一个例子:阅读理解式问答(task_reading_comprehension_by_seq2seq.py),语料跟之前一样,都是用WebQA和SogouQA,最终的得分在0.77左右(单模型,没精调)。
方法简述
由于这次主要目的是给bert4keras增加demo,因此效率就不是主要关心的目标了。这次的目标主要是通用性和易用性,所以用了最万能的方案——seq2seq来实现做阅读理解。
用seq2seq做的话,基本不用怎么关心模型设计,只要把篇章和问题拼接起来,然后预测答案就行了。此外,seq2seq的方案还自然地包括了判断篇章有无答案的方法,以及自然地导出一种多篇章投票的思路。总而言之,不考虑效率的话,seq2seq做阅读理解是一种相当优雅的方案。
这次实现seq2seq还是用UNILM的方案,如果还不了解的读者,可以先阅读《从语言模型到Seq2Seq:Transformer如戏,全靠Mask》了解相应内容。
开源一版DGCNN阅读理解问答模型(Keras版)
By 苏剑林 | 2019-08-20 | 69190位读者 | 引用去年写过《基于CNN的阅读理解式问答模型:DGCNN》,介绍了一个纯卷积的简单的问答模型。当时是用Tensorflow实现的,而且没有开源,这几天抽空用Keras复现了一下,决定开源。
模型综述
关于DGCNN的基本介绍,这里不再赘述。本文的模型并不是之前模型的重复实现,而是有所改动,这里只介绍一下被改动的地方。
1、这里放出的模型,线下验证集的分数大概是0.72(之前大约是0.75);
2、本次模型以字为单位,使用笔者之前探索出来的“字词混合Embedding”(之前是以词为单位);
3、本次模型完全去掉了人工特征(之前用了8个人工特征);
4、本次模型去掉了位置Embedding(之前将位置Embedding拼接到输入上);
5、模型架构和训练细节有所微调。
基于CNN的阅读理解式问答模型:DGCNN
By 苏剑林 | 2018-04-15 | 421627位读者 | 引用2019.08.20更新:开源了一个Keras版(https://kexue.fm/archives/6906)
早在年初的《Attention is All You Need》的介绍文章中就已经承诺过会分享CNN在NLP中的使用心得,然而一直不得其便。这几天终于下定决心来整理一下相关的内容了。
背景
事不宜迟,先来介绍一下模型的基本情况。
模型特点
本模型——我称之为DGCNN——是基于CNN和简单的Attention的模型,由于没有用到RNN结构,因此速度相当快,而且是专门为这种WebQA式的任务定制的,因此也相当轻量级。SQUAD排行榜前面的模型,如AoA、R-Net等,都用到了RNN,并且还伴有比较复杂的注意力交互机制,而这些东西在DGCNN中基本都没有出现。
这是一个在GTX1060上都可以几个小时训练完成的模型!
DGCNN,全名为Dilate Gated Convolutional Neural Network,即“膨胀门卷积神经网络”,顾名思义,融合了两个比较新的卷积用法:膨胀卷积、门卷积,并增加了一些人工特征和trick,最终使得模型在轻、快的基础上达到最佳的效果。在本文撰写之时,本文要介绍的模型还位于榜首,得分(得分是准确率与F1的平均)为0.7583,而且是到目前为止唯一一个一直没有跌出前三名、并且获得周冠军次数最多的模型。
【语料】2500万中文三元组!
By 苏剑林 | 2017-04-24 | 84638位读者 | 引用闲聊
这两年,知识图谱、问答系统、聊天机器人等领域是越来越火了。知识图谱是一个很泛化的概念,在我看来,涉及到知识库的构建、检索、利用等机器学习相关的内容,都算知识图谱。当然,这也不是个什么定义,只是个人的直观感觉。
做知识图谱的读者都知道,三元组是结构化知识的一种方法,是做知识型问答系统的重要组成部分。对于英文领域,已经有一些较大的开源的三元组语料库,而很显然,中文目前还没有这样的语料库共享(哪怕有人爬取到了,也珍藏起来了)。笔者前段时间写了个百度百科的爬虫,爬了一段时间,抓了几百万个百度百科的词条。其中不少词条含有一些结构化的信息,直接抽取出来,就是有效的“三元组”了,可以用来做知识图谱。本文分享的三元组语料正是由此而来,共有2500万个三元组。
【语料】百度的中文问答数据集WebQA
By 苏剑林 | 2017-04-12 | 216693位读者 | 引用信息抽取
众所周知,百度知道上有大量的人提了大量的问题,并且得到大量的回复。然而,百度知道上的回复者貌似懒人居多,他们往往喜欢直接在网上复制粘贴一大片来作为回答内容,而且这些内容可能跟问题相关,也可能跟问题不相关,比如
https://zhidao.baidu.com/question/557785746.html
问:广州白云山海拨多高
答:广州白云山(Guangzhou Baiyun Mountain),是新 “羊城八景”之首、国家4A级景区和国家重点风景名胜区。它位于广州市的东北部,为南粤名山之一,自古就有“羊城第一秀”之称。山体相当宽阔,由30多座山峰组成,为广东最高峰九连山的支脉。面积20.98平方公里,主峰摩星岭高382米(注:最新测绘高度为372.6米——国家测绘局,2008年),峰峦重叠,溪涧纵横,登高可俯览全市,遥望珠江。每当雨后天晴或暮春时节,山间白云缭绕,蔚为奇观,白云山之名由此得来
最近评论