26 Jan

Transformer升级之路:16、“复盘”长度外推技术

回过头来看,才发现从第7篇《Transformer升级之路:7、长度外推性与局部注意力》开始,“Transformer升级之路”这个系列就跟长度外推“杠”上了,接连9篇文章(不算本文)都是围绕长度外推展开的。如今,距离第7篇文章刚好是一年多一点,在这一年间,开源社区关于长度外推的研究有了显著进展,笔者也逐渐有了一些自己的理解,比如其实这个问题远不像一开始想象那么简单,以往很多基于局部注意力的工作也不总是有效,这暗示着很多旧的分析工作并没触及问题的核心。

在这篇文章中,笔者尝试结合自己的发现和认识,去“复盘”一下主流的长度外推结果,并试图从中发现免训练长度外推的关键之处。

问题定义

顾名思义,免训练长度外推,就是不需要用长序列数据进行额外的训练,只用短序列语料对模型进行训练,就可以得到一个能够处理和预测长序列的模型,即“Train Short, Test Long”。那么如何判断一个模型能否用于长序列呢?最基本的指标就是模型的长序列Loss或者PPL不会爆炸,更加符合实践的评测则是输入足够长的Context,让模型去预测答案,然后跟真实答案做对比,算BLEU、ROUGE等,LongBench就是就属于这类榜单。

点击阅读全文...

20 Nov

Transformer升级之路:15、Key归一化助力长度外推

大体上,我们可以将目前Transformer的长度外推技术分为两类:一类是事后修改,比如NTK-RoPEYaRNReRoPE等,这类方法的特点是直接修改推理模型,无需微调就能达到一定的长度外推效果,但缺点是它们都无法保持模型在训练长度内的恒等性;另一类自然是事前修改,如ALIBIKERPLEXPOS以及HWFA等,它们可以不加改动地实现一定的长度外推,但相应的改动需要在训练之前就引入,因此无法不微调地用于现成模型,并且这类方法是否能够Scale Up还没得到广泛认可。

在这篇文章中,笔者将介绍一种意外发现的长度外推方案——“KeyNorm”——对Attention的Key序列做L2 Normalization,很明显它属于事前修改一类,但对Attention机制的修改非常小,因此看上去非常有希望能够Scale Up。

最初动机

之所以说“意外发现”,是因为该改动的原始动机并不是长度外推,而是尝试替换Scaled Dot-Product Attention中的Scale方式。我们知道,Attention的标准定义是(本文主要考虑Causal场景)
\begin{equation}\boldsymbol{o}_i = \frac{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)\boldsymbol{v}_j}{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)},\quad \boldsymbol{q}_i,\boldsymbol{k}_j\in\mathbb{R}^d\label{eq:sdpa}\end{equation}

点击阅读全文...

14 Aug

Transformer升级之路:13、逆用Leaky ReRoPE

上周在《Transformer升级之路:12、无限外推的ReRoPE?》中,笔者提出了ReRoPE和Leaky ReRoPE,诸多实验结果表明,它们能够在几乎不损失训练效果的情况下免微调地扩展LLM的Context长度,并且实现了“longer context, lower loss”的理想特性,此外跟NTK-aware Scaled RoPE不同的是,其中ReRoPE似乎还有表现出了无限的Context处理能力。

总之,ReRoPE看起来相当让人满意,但美中不足的是会增加推理成本,具体表现为第一步推理需要算两次Attention,以及后续每步推理需要重新计算位置编码。本文试图通过在训练中逆用Leaky ReRoPE的方法来解决这个问题。

回顾

让我们不厌其烦地重温一下:RoPE形式上是一种绝对位置编码,但实际达到的效果是相对位置编码,对应的相对位置矩阵是:
\begin{equation}\begin{pmatrix}0 & \\
1 & 0 & \\
2 & 1 & 0 &\\
3 & 2 & 1 & 0 & \\
\ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\tiny{L - 2} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\tiny{L - 1} & \tiny{L - 2} & \ddots & \ddots & \ddots & 3 & 2 & 1 & 0 & \\
\end{pmatrix}\label{eq:rope}\end{equation}

点击阅读全文...

7 Aug

Transformer升级之路:12、无限外推的ReRoPE?

自从在《Transformer升级之路:11、将β进制位置进行到底》中引入混合进制的思路进一步推广了NTK-aware Scaled RoPE后,笔者感觉类似思路的效果已经达到了上限,想要更大幅度的提升就必须另辟蹊径了。这时候笔者想起了此前构思过的一个思路,该思路由于复杂度较高所以被搁置下了,既然现在已经遇到了瓶颈,那么“唯一的办法就是最好的办法”,于是便将它重拾起来。

万万没想到的是,尽管该方法增加了一些推理复杂度,但它的实验效果却惊人地好——甚至隐约有无限的长度外推能力!因此,笔者迫不及待地撰写了本文来分享该方法。由于形式上跟ReLU激活函数的相似性,所以笔者将该方法命名为“ReRoPE (Rectified Rotary Position Embeddings)”。

重温

我们知道,RoPE形式上是一种绝对位置编码,但实际上给Attention带来的是相对位置信息,即如下的Toeplitz矩阵

点击阅读全文...

31 Jul

Transformer升级之路:11、将β进制位置进行到底

在文章《Transformer升级之路:10、RoPE是一种β进制编码》中,我们给出了RoPE的$\beta$进制诠释,并基于进制转化的思路推导了能够在不微调的情况下就可以扩展Context长度的NTK-aware Scaled RoPE。不得不说,通过类比$\beta$进制的方式来理解位置编码,确实是一个非常美妙且富有启发性的视角,以至于笔者每次深入思考和回味之时,似乎总能从中得到新的领悟和收获。

本文将重新回顾RoPE的$\beta$进制诠释,并尝试将已有的NTK-aware Scaled RoPE一般化,以期望找到一种更优的策略来不微调地扩展LLM的Context长度。

进制类比

我们知道,RoPE的参数化沿用了Sinusoidal位置编码的形式。而不知道是巧合还是故意为之,整数$n$的Sinusoidal位置编码,与它的$\beta$进制编码,有很多相通之处。

点击阅读全文...

6 Jul

Transformer升级之路:10、RoPE是一种β进制编码

对关心如何扩展LLM的Context长度的读者来说,上周无疑是激动人心的一周,开源社区接连不断地出现令人振奋的成果。首先,网友@kaiokendev在他的项目SuperHOT中实验了“位置线性内插”的方案,显示通过非常少的长文本微调,就可以让已有的LLM处理Long Context。几乎同时,Meta也提出了同样的思路,带着丰富的实验结果发表在论文《Extending Context Window of Large Language Models via Positional Interpolation》上。惊喜还远不止此,随后网友@bloc97提出了NTK-aware Scaled RoPE,实现了不用微调就可以扩展Context长度的效果!

以上种种进展,尤其是NTK-aware Scaled RoPE,迫使笔者去重新思考RoPE的含义。经过分析,笔者发现RoPE的构造可以视为一种$\beta$进制编码,在这个视角之下,开源社区的这些进展可以理解为对进制编码编码的不同扩增方式。

点击阅读全文...

12 May

Transformer升级之路:9、一种全局长度外推的新思路

说到Transformer无法处理超长序列的原因,大家的第一反应通常都是Self Attention的二次复杂度。但事实上,即便忽略算力限制,常规的Transformer也无法处理超长序列,因为它们的长度外推性(Length Extrapolation)并不好,具体表现为当输入序列明显超过训练长度时,模型的效果通常会严重下降。

尽管已有一些相关工作,但长度外推问题离实际解决还比较远。本文介绍笔者构思的一种参考方案,它可能是目前唯一一种可以用在生成模型上、具备全局依赖能力的长度外推方法。

方法回顾

长度外推,也称为长度泛化(Length Generalization),此前我们在《Transformer升级之路:7、长度外推性与局部注意力》《Transformer升级之路:8、长度外推性与位置鲁棒性》已经介绍过部分工作。然而,它们各有各的问题。

点击阅读全文...

11 Dec

输入梯度惩罚与参数梯度惩罚的一个不等式

在本博客中,已经多次讨论过梯度惩罚相关内容了。从形式上来看,梯度惩罚项分为两种,一种是关于输入的梯度惩罚$\Vert\nabla_{\boldsymbol{x}} f(\boldsymbol{x};\boldsymbol{\theta})\Vert^2$,在《对抗训练浅谈:意义、方法和思考(附Keras实现)》《泛化性乱弹:从随机噪声、梯度惩罚到虚拟对抗训练》等文章中我们讨论过,另一种则是关于参数的梯度惩罚$\Vert\nabla_{\boldsymbol{\theta}} f(\boldsymbol{x};\boldsymbol{\theta})\Vert^2$,在《从动力学角度看优化算法(五):为什么学习率不宜过小?》《我们真的需要把训练集的损失降低到零吗?》等文章我们讨论过。

在相关文章中,两种梯度惩罚都声称有着提高模型泛化性能的能力,那么两者有没有什么联系呢?笔者从Google最近的一篇论文《The Geometric Occam's Razor Implicit in Deep Learning》学习到了两者的一个不等式,算是部分地回答了这个问题,并且感觉以后可能用得上,在此做个笔记。

最终结果

假设有一个$l$层的MLP模型,记为
\begin{equation}\boldsymbol{h}^{(t+1)} = g^{(t)}(\boldsymbol{W}^{(t)}\boldsymbol{h}^{(t)}+\boldsymbol{b}^{(t)})\end{equation}
其中$g^{(t)}$是当前层的激活函数,$t\in\{1,2,\cdots,l\}$,并记$\boldsymbol{h}^{(1)}$为$\boldsymbol{x}$,即模型的原始输入,为了方便后面的推导,我们记$\boldsymbol{z}^{(t+1)}=\boldsymbol{W}^{(t)}\boldsymbol{h}^{(t)}+\boldsymbol{b}^{(t)}$;参数全体为$\boldsymbol{\theta}=\{\boldsymbol{W}^{(1)},\boldsymbol{b}^{(1)},\boldsymbol{W}^{(2)},\boldsymbol{b}^{(2)},\cdots,\boldsymbol{W}^{(l)},\boldsymbol{b}^{(l)}\}$。设$f$是$\boldsymbol{h}^{(l+1)}$的任意标量函数,那么成立不等式
\begin{equation}\Vert\nabla_{\boldsymbol{x}} f\Vert^2\left(\frac{1 + \Vert \boldsymbol{h}^{(1)}\Vert^2}{\Vert\boldsymbol{W}^{(1)}\Vert^2 \Vert\nabla_{\boldsymbol{x}}\boldsymbol{h}^{(1)}\Vert^2}+\cdots+\frac{1 + \Vert \boldsymbol{h}^{(l)}\Vert^2}{\Vert\boldsymbol{W}^{(l)}\Vert^2 \Vert\nabla_{\boldsymbol{x}}\boldsymbol{h}^{(l)}\Vert^2}\right)\leq \Vert\nabla_{\boldsymbol{\theta}} f\Vert^2\label{eq:f}\end{equation}

点击阅读全文...