大词表语言模型在续写任务上的一个问题及对策
By 苏剑林 | 2023-09-13 | 29798位读者 | 引用对于LLM来说,通过增大Tokenizer的词表来提高压缩率,从而缩短序列长度、降低解码成本,是大家都喜闻乐见的事情。毕竟增大词表只需要增大Embedding层和输出的Dense层,这部分增加的计算量几乎不可感知,但缩短序列长度之后带来的解码速度提升却是实打实的。当然,增加词表大小也可能会对模型效果带来一些负面影响,所以也不能无节制地增加词表大小。本文就来分析增大词表后语言模型在续写任务上会出现的一个问题,并提出参考的解决方案。
优劣分析
增加词表大小的好处是显而易见的。一方面,由于LLM是自回归的,它的解码会越来越慢,而“增大词表 → 提高压缩率 → 缩短序列长度”,换言之相同文本对应的tokens数变少了,也就是解码步数变少了,从而解码速度提升了;另一方面,语言模型的训练方式是Teacher Forcing,缩短序列长度能够缓解Teacher Forcing带来的Exposure Bias问题,从而可能提升模型效果。
【生活杂记】炒锅的尽头是铁锅
By 苏剑林 | 2023-11-13 | 53864位读者 | 引用很多会下厨的同学估计都纠结过一件事情,那就是炒锅的选择。
对于炒锅的纠结,归根结底是不粘与方便的权衡。最简单的不粘锅自然是带涂层的不粘锅,如果家里的热源只有电磁炉,并且炒菜习惯比较温和,那么涂层不粘锅往往是最佳选择了。不过,一旦有了明火的燃气灶,又或者是比较喜欢爆炒,那么涂层锅可能就不是那么适合了,毕竟温度过高涂层总有脱落的风险,此时一般就考虑无涂层不粘锅。
无涂层不粘锅也有五花八门的选择,比如朴素的铁锅、带蜂窝纹的不锈钢锅、有钛锅、纯钛锅等等,价格大体上也单调递增。不过用到最后,我觉得大部分人都会回归到朴素的铁锅。
Transformer升级之路:15、Key归一化助力长度外推
By 苏剑林 | 2023-11-20 | 51704位读者 | 引用大体上,我们可以将目前Transformer的长度外推技术分为两类:一类是事后修改,比如NTK-RoPE、YaRN、ReRoPE等,这类方法的特点是直接修改推理模型,无需微调就能达到一定的长度外推效果,但缺点是它们都无法保持模型在训练长度内的恒等性;另一类自然是事前修改,如ALIBI、KERPLE、XPOS以及HWFA等,它们可以不加改动地实现一定的长度外推,但相应的改动需要在训练之前就引入,因此无法不微调地用于现成模型,并且这类方法是否能够Scale Up还没得到广泛认可。
在这篇文章中,笔者将介绍一种意外发现的长度外推方案——“KeyNorm”——对Attention的Key序列做L2 Normalization,很明显它属于事前修改一类,但对Attention机制的修改非常小,因此看上去非常有希望能够Scale Up。
最初动机
之所以说“意外发现”,是因为该改动的原始动机并不是长度外推,而是尝试替换Scaled Dot-Product Attention中的Scale方式。我们知道,Attention的标准定义是(本文主要考虑Causal场景)
\begin{equation}\boldsymbol{o}_i = \frac{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)\boldsymbol{v}_j}{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)},\quad \boldsymbol{q}_i,\boldsymbol{k}_j\in\mathbb{R}^d\label{eq:sdpa}\end{equation}
我在Performer中发现了Transformer-VQ的踪迹
By 苏剑林 | 2023-11-29 | 43592位读者 | 引用前些天我们在《VQ一下Key,Transformer的复杂度就变成线性了》介绍了“Transformer-VQ”,这是通过将Key序列做VQ(Vector Quantize)变换来实现Attention复杂度线性化的方案。诚然,Transformer-VQ提供了标准Attention到线性Attentino的一个非常漂亮的过渡,给人一种“大道至简”的美感,但熟悉VQ的读者应该能感觉到,当编码表大小或者模型参数量进一步增加时,VQ很可能会成为效果提升的瓶颈,因为它通过STE(Straight-Through Estimator)估计的梯度大概率是次优的(FSQ的实验结果也算是提供了一些佐证)。此外,Transformer-VQ为了使训练效率也线性化所做的梯度截断,也可能成为将来的效果瓶颈之一。
为此,笔者花了一些时间思考可以替代掉VQ的线性化思路。从Transformer-VQ的$\exp\left(QC^{\top}\right)$形式中,笔者联想到了Performer,继而“顺藤摸瓜”地发现原来Performer可以视为Soft版的Transformer-VQ。进一步地,笔者尝试类比Performer的推导方法来重新导出Transformer-VQ,为其后的优化提供一些参考结果。
随机分词浅探:从Viterbi Decoding到Viterbi Sampling
By 苏剑林 | 2023-09-16 | 20971位读者 | 引用上一篇文章《大词表语言模型在续写任务上的一个问题及对策》发布后,很快就有读者指出可以在训练阶段引入带有随机性的分词结果来解决同样的问题,并且已经有论文和实现。经过进一步查阅学习,笔者发现这是一个名为Subword Regularization的技巧,最早应用在NMT(机器翻译)中,目前SentencePiece也有相应的实现。看起来这个技巧确实能缓解前述问题,甚至有助于增强语言模型的容错能力,所以就有了将它加进去BytePiece的想法。
那么问题来了,如何将确定性分词改为随机性分词呢?BytePiece是基于Unigram模型的,它通过Viterbi算法找最大概率的分词方案,既然有概率,是否就可以自然地导出随机采样?本文来讨论这个问题,并分享自己的解决方案。
自然数集中 N = ab + c 时 a + b + c 的最小值
By 苏剑林 | 2023-09-20 | 37508位读者 | 引用前天晚上微信群里有群友提出了一个问题:
对于一个任意整数$N > 100$,求一个近似算法,使得$N=a\times b+c$(其中$a,b,c$都是非负整数),并且令$a+b+c$尽量地小。
初看这道题,笔者第一感觉就是“这还需要算法?”,因为看上去自由度太大了,应该能求出个解析解才对,于是简单分析了一下之后就给出了个“答案”,结果很快就有群友给出了反例。这时,笔者才意识到这题并非那么平凡,随后正式推导了一番,总算得到了一个可行的算法。正当笔者以为这个问题已经结束时,另一个数学群的群友精妙地构造了新的参数化,证明了算法的复杂度还可以进一步下降!
整个过程波澜起伏,让笔者获益匪浅,遂将过程记录在此,与大家分享。
脑洞大开:非线性RNN居然也可以并行计算?
By 苏剑林 | 2023-09-26 | 52146位读者 | 引用近年来,线性RNN由于其可并行训练以及常数推理成本等特性,吸引了一定研究人员的关注(例如笔者之前写的《Google新作试图“复活”RNN:RNN能否再次辉煌?》),这让RNN在Transformer遍地开花的潮流中仍有“一席之地”。然而,目前看来这“一席之地”只属于线性RNN,因为非线性RNN无法高效地并行训练,所以在架构之争中是“心有余而力不足”。
不过,一篇名为《Parallelizing Non-Linear Sequential Models over the Sequence Length》的论文有不同的看法,它提出了一种迭代算法,宣传可以实现非线性RNN的并行训练!真有如此神奇?接下来我们一探究竟。
求不动点
原论文对其方法做了非常一般的介绍,而且其侧重点是PDE和ODE,这里我们直接从RNN入手。考虑常见的简单非线性RNN:
\begin{equation}x_t = \tanh(Ax_{t-1} + u_t)\label{eq:rnn}\end{equation}
从梯度最大化看Attention的Scale操作
By 苏剑林 | 2023-10-22 | 66192位读者 | 引用我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。
那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。
已有结果
在《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}
最近评论