《教材如何写》:对于教材写法的一点考虑
By 苏剑林 | 2011-04-16 | 23503位读者 | 引用转载自:eaglefantasy.com
有感于Matrix67神牛的这篇文章(强烈建议大家去读一读),我也发表一下自己对于教材编写的一点看法。
1.对线性代数的吐槽
(没学过线性代数的同学请忽略下面3段往后接着看。)
我一直觉得线性代数用那种严格公理化的语言写成课本根本不适合初学者学习,一开始学习线性代数的时候,我本人对很多概念的直观意义根本就是完全不知道。我们的课本是丘维声的《简明线性代数》,我在此毫不掩饰的表示对这本教材的鄙视:这本教材居然是按照这样的顺序讲线性代数的:线性方程组->行列式->线性方程组的进一步讨论->矩阵的运算->一大堆东西->线性空间->线性映射->一大堆东西。这个狗屁顺序直接导致我前半个学期一直以为线性代数就是研究怎么解线性方程组的,我心想,这么简单的问题,具体问题谁都会解,值得这么大动干戈的定义出这么大堆东西么。。。一直到线性空间那一个章节以前,我完全就不知道线性代数整个是在干什么..后来学的多了我才知道,其实线性代数就是研究线性空间和线性映射的嘛,什么线性方程组,根本没那么重要。一个更加合理的顺序是:先讲线性空间、线性映射,其中明确说明矩阵就是线性映射,然后再讲行列式,然后线性方程组只作为一个例子出现就可以了。
地球引力场的悬链线方程
By 苏剑林 | 2011-05-15 | 60169位读者 | 引用之前曾在《自然极值》系列文章中提到过均匀重力场下的悬链线形状问题,并且在那文章中向读者提出:在一个质点(地球)引力场中的悬链线形状会是怎么样的。说实话,提出这个问题的时候,我还不懂怎么解答这个问题,不过现在会了,回头一看,已经几个月了,时间过得真快...
与之前的思路一样,我们依旧采用的是“平衡态公理”,即总势能最小。从天体力学中我们知道,任意两个质点间的势能为$-\frac{Gm_1 m_2}{r}$。对于本题的悬链线问题,我们可以把地球放到坐标原点位置,而悬链的两个固定点分别为$(x_1,y_1)$和$(x_2,y_2)$,链的总长度为l。即
$$\int_{x_1}^{x_2} \sqrt{dx^2+dy^2}=l$$
记2011北京大学天文夏令营
By 苏剑林 | 2011-07-18 | 28228位读者 | 引用一道整数边三角形题目
By 苏剑林 | 2011-07-19 | 21140位读者 | 引用[更正]一道经典不等式的美妙证明
By 苏剑林 | 2011-07-20 | 23120位读者 | 引用在数学竞赛中,很多题目都专门设置了一种技巧,这种技巧在很大程度上是不怎么理所当然的,换句话说,难以“顺理成章”地想下去,或者是说方法不成系统的,这也是我有点不喜欢数学竞赛题目的一个原因。当然,另一方面,个人认为数学竞赛比物理竞赛更能锻炼一个人的思维能力,尤其是在抽象思维以及几何想象能力等,因此做一些这样的题目也会有好处的。
下面就是一道很经典的竞赛题,它是在韩国举行的第42届IMO中的题目:
设a,b,c都是正实数,求证:
$\frac{a}{\sqrt{a^2+8bc}}+ \frac{b}{\sqrt{b^2+8ac}} + \frac{c}{\sqrt{c^2+8ab}} \geq 1$
数学竞赛广东预赛|组成三角形的概率
By 苏剑林 | 2011-09-12 | 56645位读者 | 引用九月三日BoJone和九个同学到云浮参加了今年广东省的数学竞赛预赛,那一起出发、玩笑、作战、吃饭的情景依然历历在目,让我久久不能忘怀。是呀,能够并肩作战的感觉真好!九日数学成绩出来了,遗憾的是今年政策改变了,我被告知整个市只有三个名额能够参加复赛,于是新兴只有我一个人进入了复赛(另外两个据说是罗定的,我们三个并列第一)。有点无语,我想,大概是要把那些为了功利而参赛的人都给刷下去吧...
今年广东的预赛题前所未有的简单,不论是和全国其他地方相比还是和上一年的题目相比,都简单了不少,但我还是做得不大理想,据我估计,120分的卷子我顶多能够拿个68分,所以BoJone的基本技能实在不容乐观。从云浮考试回来后,和同行的同学讨论试题,得出了一些很有趣的结果,那过程可谓其乐无穷呀!下面是倒数第二题预赛题的几个绝妙解法,供大家欣赏。解法由我和伍泽麒(人称“兔子、神兔”,人如其名,天资聪颖,性格可爱)完成。
题目:
在一条线段中随意选取两个点,把这条线段截成三段,求这三段线段能够组成一个三角形的概率。
引力透镜——用经典力学推导光的偏转公式
By 苏剑林 | 2012-04-30 | 61926位读者 | 引用引力透镜
————用经典力学推导光的引力偏转角公式
在2012年第四期的《天文爱好者》上,Richard de Grijs(何锐思)教授的《引力透镜——再领科学潮》一文详细而精彩地讲述了有关引力透镜方面的知识,尤其是它在天文方面的重要应用,让我收获颇丰。笔者在赞叹作者优美的文笔和译者程思浩同好的生动翻译之余,也感到了一丝不足。文章主要讲了引力透镜在天文研究中所扮演的重要角色,却未对引力透镜的原理、本质方面多加描述。时空的扭曲是广义相对论给出的答案,可是难道仅仅从经典力学就不能领略丝毫?藉此,BoJone这在里对引力透镜多说些东西,与大家相互学习研究。当然,由于我只是一个初出茅庐的业余爱好者,其中的不当之处还望各位斧正。
相对论、对称和第四维
By 苏剑林 | 2012-05-01 | 77554位读者 | 引用这篇文章其实在年初就完成了。
众所周知,我们生活在一个平坦的世界中。正如我们能够感受到的那样,在这个被称为“欧几里得平直空间”的世界里,空间里两点间的最短曲线是两点间的直线段,空间里的任意直角三角形都满足勾股定理,每个物体都有着自己的长、宽、高,它们都随着时间的流逝而运动着。这种世界观把时间独立于空间之外,作为一个独特的研究对象。但是自爱因斯坦在1905年发表狭义相对论以来,我们的宇宙就被描述成为了由三维空间和一维时间组成的“四维时空”,在这里,时间和空间的地位是等价的。不少同好们也许会感到非常困惑:即使证明了时间与空间的确存在着某种联系,也不必要把时间描述成是世界的一维吧?在我们的感官里,时间明明就和空间的三维差别甚大,时间和空间怎么能够等同起来呢?其实答案很简单:为了美。把时间看成与空间等价的一维之后,整个力学体系体现出一种前所未有的对称美,这种美不仅让人赏心悦目,而且极大地方便了我们进一步处理问题。
对称
最近评论