20 Sep

一道从小学到高中都可能考到的题目

这是一道很多时候都会考到的题目:
比较$n^{n+1}$与$(n+1)^n$的大小(其中n非负)。

在小学我们会使用直接计算;
在初中我们会从一些例子找规律;
在高中我们就会直接去证明了。

点击阅读全文...

9 Jan

精确自由落体运动定律的讨论(二)

跳伞过程中的自由落体阶段.jpg

之前在这篇文章中,我们使用过一个牛顿引力场中的自由落体公式:
$t=\sqrt{\frac{r_0}{2GM}}{r_0 \cdot arctg \sqrt{\frac{r_0 -r}{r}}+\sqrt{r(r_0 -r)}}$——(1)

我们来尝试一下推导出这个公式来。同时,站长在逐渐深入研究的过程中,发现微分方程极其重要。以前一些我认为不可能解决的问题,都用微分方程逐渐解决了。在以后的文章里,我们将会继续体验到微分方程的伟大魔力!因此,建议各位有志研究物理学的朋友,一定要掌握微分方程,更加深入的,需要用到偏微分方程!

首先,质量为m的物理在距离地心r处的引力为$\frac{GMm}{r^2}$,根据牛顿第二定律F=ma,自然下落的物体所获得的加速度为$\frac{GM}{r^2}$。假设物体从距离地心r开始向地心自由下落,求位移s关于t的函数s=s(t).

点击阅读全文...

20 Mar

《方程与宇宙》:二体问题的来来去去(一)

二体问题的轨道模拟

二体问题的轨道模拟

为了让大家能够查询到“天体力学”方面的内容,同时锻炼我的表达和计算能力,BoJone构思了《方程与宇宙》这个主题,主要是写一些关于使用数学相对深入地讨论一些天文问题。其实我一直觉得,不用公式是无法完美地描述科学的(当然也不能纯公式),我记得霍金的《时间简史》以及《果壳中的宇宙》等之类的书,都力求不用或者尽可能少用数学公式来表达自己的观点。这种模式对于对于公众来说是很好的,但是对于希望深入研究的朋友来说却难以进行。所以我主张:宇宙是算出来的!

这个主题每一个字都是由BoJone敲击出来的,其中包括引用了《天体力学引论》里面的一些内容,以及加入了BoJone个人的一些见解。由于篇幅长及时间有限问题,BoJone打算分若干次撰写发布,并且尽可能写得通俗一点,力求让有一点微积分基础的朋友就可以弄懂。这里首先发布第一部分。由于时间匆忙等原因,可能会出现一些疏忽,欢迎大家挑错!

点击阅读全文...

27 Mar

《方程与宇宙》:活力积分和开普勒方程(二)

二体运动

二体运动

上一回的讨论中,我们已经解决了大部分的问题,并且表达了找到r或者$\theta$关于时间t的函数的希望。在最后的内容中,我们做了以下工作:

由(7)得到$\dot{\theta}=h/r^2$,代入(6)得到:
$$\ddot{r} -h^2/r^3=-\frac{\mu}{r^2}\tag{10}$$这是一个二阶微分方程,它的解很容易找出,但是这个积分太复杂:
$$\dot{r}\frac{d\dot{r}}{dr}=h^2/r^3-\frac{\mu}{r^2}$$
$\dot{r}d\dot{r}=(h^2/r^3-\frac{\mu}{r^2})dr$,两端积分
$$\dot{r}^2={2\mu}/r-h^2/r^2+K_1\tag{11}$$$$\Rightarrow {dt}/{dr}=\frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}$$
$t=\int \frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}dr$

点击阅读全文...

3 Apr

《方程与宇宙》:抛物线与双曲线轨道(三)

圆锥曲线

圆锥曲线

经过上两回的讨论,我们已经基本摸清了二体问题的运动情况。我们已经找到了二体问题在轨道为椭圆的时候的所有积分,给出了“活力公式”等常用公式的证明,并且留下了一些没有解答的问题。那就是在轨道为抛物线和双曲线时的最后一个积分还没有找出来,现在我们解决这两个问题。其中的关键积分依旧是
$\dot{r}^2={2\mu}/r-{\mu a(1-e^2)}/r^2-\frac{\mu}{a}$——(12)

点击阅读全文...

21 Feb

把地球放到“宇宙中心”...

Solar_sys

Solar_sys

虽然地心说早已站不住脚了,但是我们的确是站在地球上观测宇宙的,我们得把地球视为静止的,才能满足我们日常的观测所需。也就是说,必须得以地球为参照系。这样,我们其实也就重新树立了地球的“宇宙中心”地位。最典型的模型就是所谓的天球坐标系,它的本质就是把地球看做宇宙的中心...

点击阅读全文...

27 Feb

“n次方程有n个根”的证明

代数基本定理:任何一个一元复系数多项式都至少有一个复数根。也就是说,复数域是代数封闭的。

虽说这有其名,但却无其实,它并不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理(Fundamental theorem of algebra)。

建立在此前提上,我们可以推出:

一元复系数n次代数方程在复数范围内都有n个根(有可能是共轨复根)。

点击阅读全文...

6 Mar

(原创)切抛物线法解方程

牛顿法使用的是函数切线的方程的零点来逼近原函数的零点,他所使用的是“切直线”,要是改为同曲率的“切抛物线”,则有更稳定的收敛效果以及更快的收敛速度

设函数$y=f(x)$在$(x_0,y_0)$处有一条“切抛物线”$y=ax^2+bx+c$,则应该有

$a(x_0+\Delta x)^2+b(x_0+\Delta x)+c=f(x_0+\Delta x)$-------(A)
$ax_0^2+bx_0+c=f(x_0)$-------(B)
$a(x_0-\Delta x)^2+b(x_0-\Delta x)+c=f(x_0-\Delta x)$-------(C)

其中$lim_{\Delta x->0}$

点击阅读全文...