Designing GANs:又一个GAN生产车间
By 苏剑林 | 2020-02-13 | 32923位读者 | 引用在2018年的文章里《f-GAN简介:GAN模型的生产车间》笔者介绍了f-GAN,并评价其为GAN模型的“生产车间”,顾名思义,这是指它能按照固定的流程构造出很多不同形式的GAN模型来。前几天在arxiv上看到了新出的一篇论文《Designing GANs: A Likelihood Ratio Approach》(后面简称Designing GANs或原论文),发现它在做跟f-GAN同样的事情,但走的是一条截然不同的路(不过最后其实是殊途同归),整篇论文颇有意思,遂在此分享一番。
f-GAN回顾
从《f-GAN简介:GAN模型的生产车间》中我们可以知道,f-GAN的首要步骤是找到满足如下条件的函数$f$:
1、$f$是非负实数到实数的映射($\mathbb{R}^* \to \mathbb{R}$);
2、$f(1)=0$;
3、$f$是凸函数。
鬼斧神工:求n维球的体积
By 苏剑林 | 2014-12-23 | 107807位读者 | 引用今天早上同学问了我有关伽马函数和$n$维空间的球体积之间的关系,我记得我以前想要研究,但是并没有落实。既然她提问了,那么就完成这未完成的计划吧。
标准思路
简单来说,$n$维球体积就是如下$n$重积分
$$V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}dx_1 dx_2\dots dx_n$$
用更加几何的思路,我们通过一组平行面($n-1$维的平行面)分割,使得$n$维球分解为一系列近似小柱体,因此,可以得到递推公式
$$V_n (r)=\int_{-r}^r V_{n-1} \left(\sqrt{r^2-t^2}\right)dt$$
设$t=r\sin\theta_1$,就有
$$V_n (r)=r\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-1} \left(r\cos\theta_1\right)\cos\theta_1 d\theta_1$$
在讨论曲线坐标系的积分时,通常都会出现行列式这个东西,作为“体积元”的因子。在广义相对论中,爱因斯坦场方程的作用量就带有度规的行列式,而在对其进行变分时,自然也就涉及到了行列式的求导问题。我参考了朗道的《场论》以及《数理物理基础--物理需用线性高等数学导引》,了解到相关结果,遂记录如下。
推导
设
\begin{equation}\boldsymbol{A}(t)=\left(a_{ij}(t)\right)_{n\times n}\end{equation}
是一个n阶矩阵,其中每个矩阵元素都是t的函数。其行列式为$|\boldsymbol{A}|$,自然地,考虑
\begin{equation}\frac{d}{dt}|\boldsymbol{A}|\end{equation}
我从来不想在教科书上的定义上纠结太多,因为我知道,真正对定义的理解,需要在长期的实践应用中慢慢感悟的,所以我们唯一需要做的是继续我们的研究。
但是前些天有些朋友问到我关于微分的理解,比如“dx是不是一定很小”等等,所以决定在此写写我的理解。
与微分联系很紧密的,也是我们很熟悉的东西,当然是“增量 ”啦,比如$\Delta y$、$\Delta x$等等,增量显然是可以任意大的(只要自变量还在定义域内)。那么考虑一个函数$y=f(x)$,函数的微分是怎么出现的呢?那是因为我们直接研究函数的增量是比较麻烦的,所以就引入了微分dy,当$\Delta x$很小时,它代表增量的主项:$\Delta y=dy+o(\Delta x)=A \Delta x+o(\Delta x)$,A是一个常数。
微积分学习(二):导数
By 苏剑林 | 2009-09-12 | 19857位读者 | 引用自从上次写了关于微积分中的极限学习后,就很长的时间没有与大家探讨微积分的学习了(估计有20多天了吧)。启事,我自己也是从今年的9月下旬才开始系统地学习微积分的,到现在也就一个月的时间吧。学习的内容有:集合、函数、极限、导数、微分、积分。不过都是一元微积分,多元的微积分正在紧张地进修中......
现在不妨和大家探讨一下关于微积分中的最基本内容——“导数”的学习。
其实,用最简单的说法,如果存在函数$f(x)$,那么它的导数(一阶导数)为
$$\lim_{\Delta x->0} f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x}$$
微积分学习(一):极限
By 苏剑林 | 2009-08-16 | 26396位读者 | 引用本文不是微积分教程,而是发表自己学习中的一些看法,以及与同好们讨论相关问题。
拿起任何一本“微积分”教程,都可以看见那专业而严格的数学语言,因此很多人望而生畏。的确,由于牛顿和莱布尼茨创立的微积分是不严格的,因此引发了第二次数学危机。经过法国数学家柯西和德国数学家魏尔斯特拉斯的努力,使得微积分有了前所未有的严密化,克服了第二次数学危机。加之后来的第三次数学危机,数学就更加严密了。
但是对于初学者,严密化的微积分令人十分费解。因此,我们不妨按照微积分的创立顺序,即“不严密——严密”的顺序来学习。这样不仅能够让我们更高效率地学习,而且增加学习数学的兴趣。
最近评论