31 Oct

《新理解矩阵2》:矩阵是什么?

上一篇文章中我从纯代数运算的角度来讲述了我对矩阵的一个理解,可以看到,我们赋予了矩阵相应的运算法则,它就在代数、分析等领域显示出了巨大作用。但是纯粹的代数是不足够的,要想更加完美,最好是找到相应的几何对象能够与之对应,只有这样,我们才能够直观地理解它,以达到得心应手的效果。

几何理解

我假设读者已经看过孟岩的《理解矩阵》三篇文章,所以更多的细节我就不重复了。我们知道,矩阵A

$$\begin{pmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{pmatrix}$$

事实上由两个向量$[a_{11},a_{21}]^T$和$[a_{12},a_{22}]^T$(这里的向量都是列向量)组成,它描述了一个平面(仿射)坐标系。换句话说,这两个向量其实是这个坐标系的两个基,而运算$y=Ax$则是告诉我们,在$A$这个坐标系下的x向量,在$I$坐标系下是怎样的。这里的$I$坐标系就是我们最常用的直角坐标系,也就是说,任何向量(包括矩阵里边的向量),只要它前面没有矩阵作用于它,那么它都是在直角坐标系下度量出来的。

点击阅读全文...

6 Nov

王骁威:勇敢的追梦者

破解数学猜想

王骁威

王骁威

今天在看《广州日报》时,偶然发现了一个不曾听闻的名字——王骁威。

他,跟我一样是一个90后,是韶关学院的大四学生,而现在,他多了一点名头:“仅用1表示数问题中的素数猜想”这一难题的破解者。

“仅用1表示数问题中的素数猜想”出现在加拿大数学家Richard K·Guy的著作《数论中未解决的问题》中,是上世纪50年代,加拿大数学家Richard K·Guy提出一个数论猜想:对于给定的素数p,$f(p)=f(p-1)+1$是否能成立。其中,“仅用1表示数”指的是只用1通过加法和乘法以及括号来表示自然数,对于给定的自然数n,用1来表示时,1的最少个数记为$f(n)$。据说在之前就有诸多数学家论证过,在3亿之前的素数里,上述猜想是成立的。

但是王骁威通过举出反例证否了这个命题,他指出p=353942783时这个公式并不成立。他是经过四个月的钻研,王骁威运用集合论的运算、分析、优化,才成功发现这个猜想的反例的。发现反例之后,王骁威陷入兴奋,把整理成的报告寄给国内几家杂志社,结果却令他失望,几家杂志社对他的论文均不感兴趣。“我也怀疑过自己的努力是否值得,但对数学的强烈兴趣让我坚持下来。”王骁威说自己将论文译成英文,英文名为《A counterexample to the prime conjecture of expressing numbers using just ones》(中文名为《仅用1表示数中素数猜想的一个反例》),投往全球最权威的数论杂志———美国艾斯维尔出版社的《Journal of Number Theory》(数论杂志),国外专家的青睐终于让他收获成功的喜悦,论文发表在杂志第133期(明年二月)上。数学大师丘成桐也通过邮件与王骁威交流,并对他表示肯定。

点击阅读全文...

16 Nov

天体力学巨匠——拉普拉斯

本文其实好几个月前就已经写好了,讲的是我最感兴趣的天体力学领域的故事,已经发表在2012年11月的《天文爱好者》上。

天体力学巨匠——拉普拉斯

天体力学巨匠——拉普拉斯

作为一本天文科普杂志,《天文爱好者》着眼于普及天文,内容偏向于有趣的天体物理等,比较少涉及到天体力学。事实上,在天文发展史中,天体力学——研究天体纯粹在万有引力作用下演化的科学——占据了相当重要的地位。过去,天文就被划分为天体力学、天体物理以及天体测量学三个大块。只是在近现代,由于电子计算机的飞速发展,天体力学的多数问题都交给了计算机数值计算解决,因此这一领域逐渐淡出了人们视野。不过,回味当初那段天体力学史,依然让我们觉得激动人心。

首先引入“天体力学(Celestial mechanics)”这一术语的是法国著名数学家、天文巨匠拉普拉斯。他的全名为皮埃尔?西蒙?拉普拉斯(Pierre?Simon marquis de Laplace),因研究太阳系稳定性的动力学问题被誉为法国的牛顿和天体力学之父。他和生活在同一时代的法国著名数学家拉格朗日以及勒让德(Adrien-Marie Legendre)并称为“三L”。

神秘的少年时期

由于1925年的一场大火,很多拉普拉斯的生活细节资料都丢失了。根据W. W. Rouse Ball的说法,他可能是一个普通农民或农场工人的儿子,1749年3月23日出生于诺曼底卡尔瓦多斯省的伯蒙特恩奥格。少年时期,拉普拉斯凭借着自己的才能和热情,在富人邻居的帮助下完成了学业。他父亲希望这能使他将来以宗教为业,16岁时,他被送往卡昂大学读神学。但他很快在数学上显露头角。

点击阅读全文...

30 Nov

算子与线性常微分方程(上)

简介

最近在学习量子力学的时候,无意中涉及到了许多矩阵(线性代数)、群论等知识,并且发现其中有不少相同的思想,其中主要是用算子来表示其对函数的作用和反作用。比如我们可以记$D=\frac{d}{dx}$,那么函数$f(x)$的导数就可以看作是算子D对它的一次作用后的结果,二阶导数则是作用了两次,等等。而反过来,$D^{-1}$就表示这个算子的反作用,它把作用后的函数(像)还原为原来的函数(原像),当然,这不是将求导算子做简单的除法,而是积分运算。用这种思想来解答线性微分方程,有着统一和简洁的美。

线性微分方程是求解一切微分方程的基础,一般来说它形式比较简单,多数情况下我们都可以求出它的通解。在非相对论性量子力学的薛定谔方程中,本质上就是在求解一道二阶偏线性微分方程。另一方面,在许多我们无法求解的非线性系统中,线性解作为一级近似,对于定性分析是极其重要的。

一阶线性常微分方程

这是以下所有微分方程求积的一个基础形式,即$\frac{dy}{dx}+g(x)y=f(x)$的求解。这是通过常数变易法来解答的,其思想跟天体力学中的“摄动法”是一致的,首先在无法求解原微分方程的时候,先忽略掉其中的一些小项,求得一个近似解。即我们先求解
$$\frac{dy}{dx}+g(x)y=0$$

点击阅读全文...

30 Nov

算子与线性常微分方程(下)

不可交换

很自然会想到把这种方法延伸到变系数微分方程的求解,也许有读者回去自己摆弄了一下却总得不到合适的解而感到困惑。在这里群的非Abel性就体现出来了,首先用一个例子来说明一下,我们考虑算子的复合
$$(D-x)(D+x)=D^2-x^2+(Dx-xD)$$

我们要谨慎使用交换律,我们记$[P,Q]=PQ-QP$

其中P和Q是两个算子,此即量子力学中的“对易式”,用来衡量算子P和算子Q的可交换程度,当然,它本身也是一个算子。我们先来求出$[D,x]$给出了什么(要是它是0的话,那就表明运算可以交换了)。究竟它等于什么呢?直接看是看不出的,我们把它作用于一个函数:
$$[D,x]y=(Dx-xD)y=D(xy)-xDy=yDx+xDy-xDy=y$$

由于“近水楼台先得月”,所以$Dxy$表示x先作用于y,然后D再作用于(xy);而$xDy$表示D先作用于y,然后x再作用于Dy。最终我们得到了

点击阅读全文...

27 Dec

费曼路径积分思想的发展(三)

3、费曼图和量子电动力学的重整化

在1947年美国避难岛(Shelter Island)会议上,兰姆报导了他的重大发现,即现今所称的兰姆位移;氢原子的$2S_{\frac{1}{2}}$能级比$2P_{\frac{1}{2}}$高出约1000MHz。而按照狄拉克理论,对纯库仑相互作用的电子-质子系统,这两个能级应该是简并的。人们很快就认识到,该位移应归之于一阶近似的辐射校正[19]。贝特用一个电子的校正质量就非相对论近似得出了氢原子nS能级的位移公:

$$\frac{8}{3\pi}(\frac{e^2}{\hbar c})Ry \frac{Z^4}{n^3} Ln\frac{K}{ < E_n-E_m > _{AV}}$$

点击阅读全文...

2 Jan

用复数化简二次曲线的尝试

当二次型在二维平面的情况下时,就等价于二次曲线的化简。二次曲线的化简主要用到平移和旋转,这恰好是复数所“擅长”的。因此,以复数为工具来对二次曲线进行化简,似乎是一种很显然的思路。然而,我却没有看到这方面的内容,而且我自己之前也忽略了这一思路。下面我对这个思路进行一点探索。

由于只打算做一些启发性引导,所以在这里只考虑$ Ax^2+2Bxy+Cy^2=1$这种不完全的形式(它不包含抛物线)。

点击阅读全文...

16 Jan

轻微的扰动——摄动法简介(1)

为了计算实际问题,我们总会采用各种各样的理想模型。一般而言,一个模型越接近实际现象,它往往会越复杂。而忽略掉多数微小的干扰,只保留一些主要的项,这通常可以得到一个相当简单、能够精确解出的模型。以这样的一个可以精确解出的近似模型为基础,逐渐地把微小项的影响添加进去,使得我们的答案越来越准确,这就是摄动法的思想,也称作“微扰理论”。这种方法源于求解天体力学的N体问题,而现在已经发展成为一门相当系统的学科,并应用到了相对多的领域,如量子力学、电子理论等。

其实不难发现,实际问题中存在不少这样的例子,即当我们要计算某个现象时,先考虑最突出的,然后再考虑细节。比如说,要计算地球的轨道,先把它看成一个与太阳组成的纯粹的二体系统,然后把各种微小效应加进去,比如月球的影响、各大行星的影响甚至由于地球的不规则形状所产生的影响等。当然,不仅仅是这一类复杂的“大问题”,我们平常可能会遇到的一些“小问题”有可能也让摄动法派上用场。本文试图将摄动法介绍给各位读者。

摄动法的主要步骤是先忽略微小影响(令小参数为0),求出精确解;然后把所要求的解表达为关于小参数的幂级数。这个方法可以用于解答代数方程、微分方程等等各种领域。下面先以一个简单的代数方程来说明:

一、求解方程:$\varepsilon x^3+x^2=p^2$

点击阅读全文...