《新理解矩阵2》:矩阵是什么?
By 苏剑林 | 2012-10-31 | 36974位读者 |上一篇文章中我从纯代数运算的角度来讲述了我对矩阵的一个理解,可以看到,我们赋予了矩阵相应的运算法则,它就在代数、分析等领域显示出了巨大作用。但是纯粹的代数是不足够的,要想更加完美,最好是找到相应的几何对象能够与之对应,只有这样,我们才能够直观地理解它,以达到得心应手的效果。
几何理解
我假设读者已经看过孟岩的《理解矩阵》三篇文章,所以更多的细节我就不重复了。我们知道,矩阵A
$$\begin{pmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{pmatrix}$$
事实上由两个向量$[a_{11},a_{21}]^T$和$[a_{12},a_{22}]^T$(这里的向量都是列向量)组成,它描述了一个平面(仿射)坐标系。换句话说,这两个向量其实是这个坐标系的两个基,而运算$y=Ax$则是告诉我们,在$A$这个坐标系下的x向量,在$I$坐标系下是怎样的。这里的$I$坐标系就是我们最常用的直角坐标系,也就是说,任何向量(包括矩阵里边的向量),只要它前面没有矩阵作用于它,那么它都是在直角坐标系下度量出来的。
(事实上,单位矩阵I是默认的直角坐标系,这一说法并非总是成立的,但是我们现在寻求直观的理解方式,我们就用最简单的东西来实行。)
太多的文字未必能够把问题说清楚,我们需要一张图来解释一下:
图上所用的矩阵A是
[3,2]
[1,3]
这构成了一个仿射坐标系,在这个坐标系下,有一个向量$x=[2,2]^T$,它在直角坐标系下测得的坐标为$[10,8]^T$,现在我们不难发现,直接用矩阵乘法来计算,有
$$Ax=[3\cdot 2+2\cdot 2,1\cdot 2+3\cdot 2]^T=[10,8]^T$$
正是我们所期待的!
为什么会有这样的特点?其实这源于我们对矩阵乘法的定义,反过来,如果我们用这样的几何方式来定义矩阵乘法,那么我们也将得到在书本上了解到的矩阵乘法计算公式。更高阶的矩阵也可以作同样的类比。推导过程只是一道很简单的练习题,读者不妨自己动笔尝试一下?
现在我们又回到孟岩文章上的说法了,对于矩阵作用于一个向量(对应的一个点),我们既可以看作点没有变,只不过是坐标系从直角坐标系变换为仿射坐标系而已;另一方面,我们也可以看做矩阵把直角坐标系的一个A'点“运动”(变换)到了A点。这两种说法都行,正如孟岩所说的“运动是相对的”。更正确地讲,两种说法都要同时被提及,才算是最好的理解。矩阵是一个点到另外一个点的变换,变换的方式就是坐标系的变换。
当然,上面只讨论了矩阵乘以向量的乘法,那么矩阵乘以矩阵呢?比如$AB$,我们就可以看作是矩阵$B$给出了一个坐标系,但是这个坐标系的各个分量是在$A$坐标系下测量得到的,而$A$是在直角坐标系下测量得到的,所以要把$B$的各个分量(列向量)与矩阵A作乘法后,才得到了这个仿射坐标系在直角坐标系下的“像”。这很直接地导致了矩阵乘以矩阵的计算公式,也很显然地回答了“为什么n阶方阵只有与n阶方阵相乘才有意义”,因为两者要在同一空间中测量,才能够完整而唯一地把测量值确定下来。正如,在n+1维的空间中讨论n个n维向量是没有意义的,因为在n+1维空间中的观测者看来,它们只不过是一个“面”,多出的一个维度可以随意变化;在n维空间中讨论n+1维向量就更没有意义了,因为维度根本就不够用。
有了这个直观的几何意义,很多问题看起来几乎都是显然的了,比如那些行列式问题,还有相似矩阵等等,这将在下回谈到。
张量介绍
我们已经大概了解到,数字的有序组合产生了向量,向量的有序组合产生了矩阵。这样两个新构造出来的对象,作用一个比一个大。那么有人会联想到:矩阵的有序组合,就可以产生一个“立方阵”,它的功能会不会更加强大?更一般的,n维立方阵呢?这种联想是有道理的,数学上也有这样的研究对象,它就是张量。
最通俗的说法,n阶张量就是一个n维立方阵,所以0阶张量就对应一个数,向量、矩阵分别对应1阶和2阶张量,我们所说的三维立方阵,就是3阶张量啦。当然,张量属于很高深的数学理论,它的性质和作用不可能这么简单就说清楚了。回想当年,爱因斯坦就是用张量分析作为工具,建立起他那伟大的广义相对论的。如果有机会的话,我们一定会重新造访它。
接下来,我们还是回到矩阵问题,谈谈矩阵的行列式。
转载到请包括本文地址:https://spaces.ac.cn/archives/1768
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Oct. 31, 2012). 《《新理解矩阵2》:矩阵是什么? 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/1768
@online{kexuefm-1768,
title={《新理解矩阵2》:矩阵是什么?},
author={苏剑林},
year={2012},
month={Oct},
url={\url{https://spaces.ac.cn/archives/1768}},
}
January 25th, 2015
为何是列向量组成新坐标系的基,以及在直角坐标系下以什么方式表示新基
AB也可以看为A在B的行向量下测量的结果,两者等价
第二个问题没理解
August 19th, 2019
直角坐标系下的基是组成的矩阵是单位矩阵I