21 Jul

思考:两个椭圆片能粘合成一个立体吗?

前两周又在群里看到一个颇为有趣的问题:两个同样大小的椭圆片可以沿着它们的长轴弯曲,沿着边缘线粘贴,能完美地贴合成一个封闭立体吗?问题来源于知乎《两个椭圆片可否以柱面弯曲边缘完美贴合?》

两个椭圆片粘合图示(截取自知乎上提问的图示)

两个椭圆片粘合图示(截取自知乎上提问的图示)

问题可以用只言片语表达清楚,甚至普通读者都能理解,而问题本身是有一定难度的,这就符合了一个漂亮的问题的条件,所以也就吸引了笔者陆陆续续思考了好多天,最终在昨天算是给出了这类问题通用的列方程思路和数值求解方案,而今天则完成了理论证明,确认两个相同椭圆片总是可以完美贴合

点击阅读全文...

9 Aug

seq2seq之双向解码

在文章《玩转Keras之seq2seq自动生成标题》中我们已经基本探讨过seq2seq,并且给出了参考的Keras实现。

本文则将这个seq2seq再往前推一步,引入双向的解码机制,它在一定程度上能提高生成文本的质量(尤其是生成较长文本时)。本文所介绍的双向解码机制参考自《Synchronous Bidirectional Neural Machine Translation》,最后笔者也是用Keras实现的。

Seq2Seq的双向解码机制图示

背景介绍

研究过seq2seq的读者都知道,常见的seq2seq的解码过程是从左往右逐字(词)生成的,即根据encoder的结果先生成第一个字;然后根据encoder的结果以及已经生成的第一个字,来去生成第二个字;再根据encoder的结果和前两个字,来生成第三个词;依此类推。总的来说,就是在建模如下概率分解
\begin{equation}p(Y|X)=p(y_1|X)p(y_2|X,y_1)p(y_3|X,y_1,y_2)\cdots\label{eq:p}\end{equation}

点击阅读全文...

25 Apr

将“Softmax+交叉熵”推广到多标签分类问题

(注:本文的相关内容已整理成论文《ZLPR: A Novel Loss for Multi-label Classification》,如需引用可以直接引用英文论文,谢谢。)

一般来说,在处理常规的多分类问题时,我们会在模型的最后用一个全连接层输出每个类的分数,然后用softmax激活并用交叉熵作为损失函数。在这篇文章里,我们尝试将“Softmax+交叉熵”方案推广到多标签分类场景,希望能得到用于多标签分类任务的、不需要特别调整类权重和阈值的loss。

类别不平衡

类别不平衡

单标签到多标签

一般来说,多分类问题指的就是单标签分类问题,即从$n$个候选类别中选$1$个目标类别。假设各个类的得分分别为$s_1,s_2,
\dots,s_n$,目标类为$t\in\{1,2,\dots,n\}$,那么所用的loss为
\begin{equation}-\log \frac{e^{s_t}}{\sum\limits_{i=1}^n e^{s_i}}= - s_t + \log \sum\limits_{i=1}^n e^{s_i}\label{eq:log-softmax}\end{equation}
这个loss的优化方向是让目标类的得分$s_t$变为$s_1,s_2,\dots,s_t$中的最大值。关于softmax的相关内容,还可以参考《寻求一个光滑的最大值函数》《函数光滑化杂谈:不可导函数的可导逼近》等文章。

点击阅读全文...

13 May

从EMD、WMD到WRD:文本向量序列的相似度计算

在NLP中,我们经常要去比较两个句子的相似度,其标准方法是想办法将句子编码为固定大小的向量,然后用某种几何距离(欧氏距离、$\cos$距离等)作为相似度。这种方案相对来说比较简单,而且检索起来比较快速,一定程度上能满足工程需求。

此外,还可以直接比较两个变长序列的差异性,比如编辑距离,它通过动态规划找出两个字符串之间的最优映射,然后算不匹配程度;现在我们还有Word2Vec、BERT等工具,可以将文本序列转换为对应的向量序列,所以也可以直接比较这两个向量序列的差异,而不是先将向量序列弄成单个向量。

后一种方案速度相对慢一点,但可以比较得更精细一些,并且理论比较优雅,所以也有一定的应用场景。本文就来简单介绍一下属于后者的两个相似度指标,分别简称为WMD、WRD。

Earth Mover's Distance

本文要介绍的两个指标都是以Wasserstein距离为基础,这里会先对它做一个简单的介绍,相关内容也可以阅读笔者旧作《从Wasserstein距离、对偶理论到WGAN》。Wasserstein距离也被形象地称之为“推土机距离”(Earth Mover's DistanceEMD),因为它可以用一个“推土”的例子来通俗地表达它的含义。

点击阅读全文...

25 Jul

学会提问的BERT:端到端地从篇章中构建问答对

机器阅读理解任务,相比不少读者都有所了解了,简单来说就是从给定篇章中寻找给定问题的答案,即“篇章 + 问题 → 答案”这样的流程,笔者之前也写过一些关于阅读理解的文章,比如《基于CNN的阅读理解式问答模型:DGCNN》等。至于问答对构建,则相当于是阅读理解的反任务,即“篇章 → 答案 + 问题”的流程,学术上一般直接叫“问题生成(Question Generation)”,因为大多数情况下,答案可以通过比较规则的随机选择,所以很多文章都只关心“篇章 + 答案 → 问题”这一步。

本文将带来一次全端到端的“篇章 → 答案 + 问题”实践,包括模型介绍以及基于bert4keras的实现代码,欢迎读者尝试。

本文的问答生成模型示意图

本文的问答生成模型示意图

点击阅读全文...

31 Jul

我们真的需要把训练集的损失降低到零吗?

在训练模型的时候,我们需要损失函数一直训练到0吗?显然不用。一般来说,我们是用训练集来训练模型,但希望的是验证集的损失越小越好,而正常来说训练集的损失降低到一定值后,验证集的损失就会开始上升,因此没必要把训练集的损失降低到0。

既然如此,在已经达到了某个阈值之后,我们可不可以做点别的事情来提升模型性能呢?ICML 2020的论文《Do We Need Zero Training Loss After Achieving Zero Training Error?》回答了这个问题。不过论文的回答也仅局限在“是什么”这个层面上,并没很好地描述“为什么”,另外看了知乎上kid丶大佬的解读,也没找到自己想要的答案。因此自己分析了一下,记录在此。

左图:不加Flooding的训练示意图;右图:加了Flooding的训练示意图

左图:不加Flooding的训练示意图;右图:加了Flooding的训练示意图

点击阅读全文...

7 Dec

【龟鱼记】全陶粒的同程底滤生态缸

最近一段时间入了水族的坑,整了个60cm×40cm的超白缸来玩,主要是龟鱼共养。个人比较追求自然仿生,所以希望能在缸里建立一个相对稳定的仿生态环境。当然,其实这都是借口,根本原因是懒得换水,也不想洗过滤棉,所以就想着依靠生态系统自身的净化能力来延长换水时间。为此,参考网上的资料搞了个同程底滤,并且根据自己的经验做了一些修改。

生态缸-俯视图

生态缸-俯视图

点击阅读全文...

10 Oct

用狄拉克函数来构造非光滑函数的光滑近似

在机器学习中,我们经常会碰到不光滑的函数,但我们的优化方法通常是基于梯度的,这意味着光滑的模型可能更利于优化(梯度是连续的),所以就有了寻找非光滑函数的光滑近似的需求。事实上,本博客已经多次讨论过相关主题,比如《寻求一个光滑的最大值函数》《函数光滑化杂谈:不可导函数的可导逼近》等,但以往的讨论在方法上并没有什么通用性。

不过,笔者从最近的一篇论文《SAU: Smooth activation function using convolution with approximate identities》学习到了一种比较通用的思路:用狄拉克函数来构造光滑近似。通用到什么程度呢?理论上有可数个间断点的函数都可以用它来构造光滑近似!个人感觉还是非常有意思的。

点击阅读全文...