29 Oct

求解微分方程的李对称方法(一)

马里乌斯·索菲斯·李

马里乌斯·索菲斯·李

在这篇日志发表之前,科学空间在整个十月就只是在国庆期间发了一篇小感想,这是比较少见的。一个小原因是这学期社团(广播台)方面的活动有点多,当然这不是主要的,其实这个月我大多数课余时间放到了两件事情上:一是无线电路的入门,二就是本文所要讲的《求解微分方程的李对称方法》

李对称方法主要是通过发现微分方程的对称性来求解微分方程。我首次接触到这个方法是在一本叫《微分方程与数学物理问题》的书上边,书中写得很清晰易懂,后来我还买了类似的《微分方程的对称与积分方法》,后者相对抽象一些,讨论也深入一些。在我目前发现的中文书籍中,这是唯一的两本以李对称方法求解微分方程为主题的书。这两本书还有一个共同特点,就是它们都是外国教材的翻译版。

点击阅读全文...

7 Dec

一阶偏微分方程的特征线法

本文以尽可能清晰、简明的方式来介绍了一阶偏微分方程的特征线法。个人认为这是偏微分方程理论中较为简单但事实上又容易让人含糊的一部分内容,因此尝试以自己的文字来做一番介绍。当然,更准确来说其实是笔者自己的备忘。

拟线性情形

一般步骤

考虑偏微分方程
$$\begin{equation}\boldsymbol{\alpha}(\boldsymbol{x},u) \cdot \frac{\partial}{\partial \boldsymbol{x}} u = \beta(\boldsymbol{x},u)\end{equation}$$
其中$\boldsymbol{\alpha}$是一个$n$维向量函数,$\beta$是一个标量函数,$\cdot$是向量的点积,$u\equiv u(\boldsymbol{x})$是$n$元函数,$\boldsymbol{x}$是它的自变量。

点击阅读全文...

13 Nov

ARXIV数学论文分布:偏微分方程最热门!

笔者成功地保研到了中山大学的基础数学专业,这个专业自然是比较理论性的,虽然如此,我还会保持着我对数据分析、计算机等方面的兴趣。这几天兴致来了,想做一下结合我的专业跟数据挖掘相结合的研究,所以就爬取了ARXIV上面近五年(2010年到2014年)的数学论文(包含的数据有:标题、分类、年份、月份),想对这几年来数学的“行情”做一下简单的分析。个人认为,ARVIX作为目前全球最大的论文预印本的电子数据库,对它的数据进行分析,所得到的结论是能够具有一定的代表性的。

当然,本文只是用来练手爬虫和基本数据分析的文章,并没有挖掘出特别有价值的信息。文末附录了笔者爬取到的数据,供有兴趣的读者进一步分析研究。

整体情况

这五年来,ARXIV的数学论文总数为135009篇,平均每年27000篇,或者每天74篇。

点击阅读全文...

9 Jun

路径积分系列:4.随机微分方程

本章将路径积分用于随机微分方程,并且得到了与不对称随机游走一样的结果,从而证明了它与该模型的等价性.

将路径积分用于随机微分方程的研究,这一思路由来已久. 费曼在他的著作[5]中,已经建立了路径积分与线性随机微分方程的关系. 而对于非线性的情况,也有不少研究,但比较混乱,如文献[8]甚至给出了错误的结果.

本文从路径积分的离散化概念出发,明确地建立了两个路径积分微元的雅可比行列式关系,从而对非线性随机微分方程也建立了路径积分. 本文的结果跟文献[9]的结果是一致的.

概念

本文所研究的仅仅是随机常微分方程,它与一般的常微分方程的区别在于布朗运动项的引入,如常见的一类随机微分方程为
$$dx(t)=p(x(t),t)dt + \sqrt{\alpha} dW_t.\tag{48}$$
其中$W_t$代表着一个标准的布朗运动. 由于引入了随机项,所以解$x(t)$不再是确定的,而是有一定的概率分布.

在对随机微分方程中,感兴趣的量有很多,比如关于$x$的某个量的期望、方差,或者稳定性,等等. 随机微分方程领域中有各种分析的技巧,但是显然,直接求出$x(t)$的概率分布后对概率分布进行研究,是最理想最容易的方案. 路径积分正是给出了求概率分布的一个方法.

点击阅读全文...

8 Apr

浅谈引力助推

这已经是去年写的稿件了,刊登在今年二月份的《天文爱好者》上,本文的标题还登载了该期天爱的封面上,当时甚是高兴呢!在此与大家分享、共勉。

相信许多天文爱好者都知道第一、第二、第三宇宙速度的概念,也会有不少的天爱自己动手计算过它们。我们道,只要发射速度达到7.9km/s,宇宙飞船就可以绕地球运行了;超过11.2km/s,就可以抛开地球,成为太阳系的一颗“人造行星”;再大一点,超过16.7km/s,那么就连太阳也甩掉了,直奔深空。

16.7km/s,咋看上去并不大,因为地球绕太阳运行的速度已经是30km/s了,这个速度在宇宙中实在是太普通了。但是对于我们目前的技术来说,它大得有点可怕。维基百科上的资料显示,史上最强劲的火箭土星五号在运送阿波罗11号到月球时,飞船最终也只能加速到接近逃逸速度,即11.2km/s,而事实上第三宇宙速度已经是是目前人造飞行器的速度极限了。可是没有速度,我们就不能发射探测器去探索深空,那些科幻小说中的“星际移民”,就永远只能停留在小说上了。

点击阅读全文...

1 Mar

对抗训练浅谈:意义、方法和思考(附Keras实现)

当前,说到深度学习中的对抗,一般会有两个含义:一个是生成对抗网络(Generative Adversarial Networks,GAN),代表着一大类先进的生成模型;另一个则是跟对抗攻击、对抗样本相关的领域,它跟GAN相关,但又很不一样,它主要关心的是模型在小扰动下的稳健性。本博客里以前所涉及的对抗话题,都是前一种含义,而今天,我们来聊聊后一种含义中的“对抗训练”。

本文包括如下内容:

1、对抗样本、对抗训练等基本概念的介绍;

2、介绍基于快速梯度上升的对抗训练及其在NLP中的应用;

3、给出了对抗训练的Keras实现(一行代码调用);

4、讨论了对抗训练与梯度惩罚的等价性;

5、基于梯度惩罚,给出了一种对抗训练的直观的几何理解。

点击阅读全文...

17 Aug

浅谈Transformer的初始化、参数化与标准化

前几天在训练一个新的Transformer模型的时候,发现怎么训都不收敛了。经过一番debug,发现是在做Self Attention的时候$\boldsymbol{Q}\boldsymbol{K}^{\top}$之后忘记除以$\sqrt{d}$了,于是重新温习了一下为什么除以$\sqrt{d}$如此重要的原因。当然,Google的T5确实是没有除以$\sqrt{d}$的,但它依然能够正常收敛,那是因为它在初始化策略上做了些调整,所以这个事情还跟初始化有关。

藉着这个机会,本文跟大家一起梳理一下模型的初始化、参数化和标准化等内容,相关讨论将主要以Transformer为心中展开。

采样分布

初始化自然是随机采样的的,所以这里先介绍一下常用的采样分布。一般情况下,我们都是从指定均值和方差的随机分布中进行采样来初始化。其中常用的随机分布有三个:正态分布(Normal)、均匀分布(Uniform)和截尾正态分布(Truncated Normal)。

点击阅读全文...

21 Feb

“闭门造车”之多模态思路浅谈(一):无损输入

这篇文章分享一下笔者关于多模态模型架构的一些闭门造车的想法,或者说一些猜测。

最近Google的Gemini 1.5和OpenAI的Sora再次点燃了不少人对多模态的热情,只言片语的技术报告也引起了大家对其背后模型架构的热烈猜测。不过,本文并非是为了凑这个热闹才发出来的,事实上其中的一些思考由来已久,最近才勉强捋顺了一下,遂想写出来跟大家交流一波,刚好碰上了两者的发布。

事先声明,“闭门造车”一词并非自谦,笔者的大模型实践本就“乏善可陈”,而多模态实践更是几乎“一片空白”,本文确实只是根据以往文本生成和图像生成的一些经验所做的“主观臆测”。

问题背景

首先简化一下问题,本文所讨论的多模态,主要指图文混合的双模态,即输入和输出都可以是图文。可能有不少读者的第一感觉是:多模态模型难道不也是烧钱堆显卡,Transformer“一把梭”,最终“大力出奇迹”吗?

点击阅读全文...