16 Sep

生成函数法与整数的分拆

我们在高中甚至初中,都有可能遇到这样的题目:

设$x,y,z$是非负整数,问$x+y+z=2014$有多少组不同的解?(不同顺序视为不同的解)

难度稍高点,可以改为

设$x,y,z$是非负整数,$0\leq x\leq y\leq z$,问$x+y+z=2014$有多少组不同的解?

这些问题都属于整数的分拆问题(广为流传的哥德巴赫猜想也是一个整数分拆问题)。有很多不同的思路可以求解这两道题,然而,个人认为这些方法中最引人入胜的(可能也是最有力的)首推“生成函数法”。

关于生成函数,本节就不多作介绍了,如果缺乏相关基础的朋友,请先阅读相关资料了解该方法。不少数论的、离散数学的、计算机科学的书籍中,都介绍了生成函数法(也叫母函数法)。本质上讲,母函数法能有诸多应用,是因为$x^a\times x^b=x^{a+b}$这一性质的成立。

点击阅读全文...

27 Oct

算符的艺术:差分、微分与伯努利数

两年前,笔者曾写过《算子与线性常微分方程》两篇,简单介绍了把线形常微分方程算符化,然后通过对算符求逆的方法求得常微分方程的通解。而在这篇文章中,笔者打算介绍关于算符类似的内容:差分算符、微分算符以及与之相关的伯努利数(Bernoulli数)。

我们记$D=\frac{d}{dx}$,那么$Df=\frac{df}{dx}$,同时定义$\Delta_t f(x)=f(x+t)-f(x)$,并且记$\Delta \equiv \Delta_1 =f(x+1)-f(x)$,这里我们研究的$f(x)$,都是具有良好性态的。我们知道,$f(x+t)$在$t=0$附近的泰勒展式为
$$\begin{aligned}f(x+t)&=f(x) + \frac{df(x)}{dx}t + \frac{1}{2!}\frac{d^2 f(x)}{dx^2}t^2 + \frac{1}{3!}\frac{d^3 f(x)}{dx^3}t^3 + \dots\\
&=\left(1+t\frac{d}{dx}+\frac{1}{2!}t^2\frac{d^2}{dx^2}+\dots\right)f(x)\\
&=\left(1+tD+\frac{1}{2!}t^2 D^2+\dots\right)f(x)\end{aligned}$$

点击阅读全文...

24 Nov

力的无穷分解与格林函数法

我小时候一直有个疑问:

直升机上的螺旋桨能不能用来挡雨?

一般的螺旋桨是若干个“条状”物通过旋转对称而形成的,也就是说,它并非一个面,按常理来说,它是没办法用来挡雨的。但是,如果在高速旋转的情况下,甚至假设旋转速度可以任意大,那么我们任意时刻都没有办法穿过它了,这种情况下,它似乎与一个实在的面无异?

力的无穷分解

力的离散化

力的离散化

当然,以上只是笔者小时候的一个“异想天开”的念头,读者不必较真。不过,这个疑问跟本文有什么联系呢?我们在研究振动问题之时,通常会遇到在变力的作用下的受迫振动问题,已知变力是时间的函数,比如$f(t)$,然而,虽然知道$f(t)$的具体形式,但是由于$f$的非线性性,加上外力之后的运动,不一定容易求解。然而,如果可以将一个变化的力分段为无数个无穷小时间内的恒力(冲力),那么我们就可以分段讨论我们要研究的运动,而通常来说,恒力的问题会比变力容易。将一个变力离散化,然后再取极限,那么是不是跟原来在变力下的运动是一样的呢?这跟文章开头的疑问有着类似的思想——离线的极限,跟连续本身,是不是等价的?

而让人惊喜的是,在通常的物理系统中,将力分段为无数个小区间内的恒力的做法,能够导致正确的答案,而且,这恰好是线性常微分方程的格林函数法。下面我们来分析这一做法。

点击阅读全文...

26 Apr

高斯型积分的微扰展开(三)

换一个小参数

比较《高斯型积分的微扰展开(一)》《高斯型积分的微扰展开(二)》两篇文章,我们可以得出关于积分
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\tag{1}$$
的两个结论:第一,我们发现类似$(4)$式的近似结果具有良好的性质,对任意的$\varepsilon$都能得到一个相对靠谱的近似;第二,我们发现在指数中逐阶展开,得到的级数效果会比直接展开为幂级数的效果要好。那么,两者能不能结合起来呢?

我们将$(4)$式改写成
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\approx\sqrt{\frac{2\pi}{a+\sqrt{a^2+6 \varepsilon}}}=\sqrt{\frac{\pi}{a+\frac{1}{2}\left(\sqrt{a^2+6 \varepsilon}-a\right)}}\tag{6}$$

点击阅读全文...

6 Jun

收到新版《量子力学与路径积分》

《量子力学与路径积分》封面

《量子力学与路径积分》封面

今天收到高教出版社的王超编辑寄来的费曼著作新版《量子力学与路径积分》了,兴奋ing...

《量子力学与路径积分》是费曼的一本经典著作,更是量子力学的经典著作——它是我目前读过的唯一一本从路径积分出发、并且以路径积分为第一性原理的量子力学著作(徐一鸿的《简明量子场论》好象是我读过的唯一一本纯粹以路径积分为方法的量子场论著作,也非常不错),其它类型的量子力学著作,也有部分谈到路径积分,但无一不是从哈密顿形式中引出路径积分的,在那种情况之下,路径积分只能算是一个推论。但是路径积分明明就作为量子力学的三种形式之一,它应该是可以作为量子力学的基本原理来提出的,而不应该作为另一种形式的推论。费曼做了尝试——从路径积分出发讲解量子力学,而且显然这种尝试是很成功的,至少对于我来说,路径积分是一种非常容易理解的量子力学形式。(这也许跟我的数学基础有关)

点击阅读全文...

4 Aug

文本情感分类(二):深度学习模型

语言处理

语言处理

《文本情感分类(一):传统模型》一文中,笔者简单介绍了进行文本情感分类的传统思路。传统的思路简单易懂,而且稳定性也比较强,然而存在着两个难以克服的局限性:一、精度问题,传统思路差强人意,当然一般的应用已经足够了,但是要进一步提高精度,却缺乏比较好的方法;二、背景知识问题,传统思路需要事先提取好情感词典,而这一步骤,往往需要人工操作才能保证准确率,换句话说,做这个事情的人,不仅仅要是数据挖掘专家,还需要语言学家,这个背景知识依赖性问题会阻碍着自然语言处理的进步。

点击阅读全文...

7 Dec

一阶偏微分方程的特征线法

本文以尽可能清晰、简明的方式来介绍了一阶偏微分方程的特征线法。个人认为这是偏微分方程理论中较为简单但事实上又容易让人含糊的一部分内容,因此尝试以自己的文字来做一番介绍。当然,更准确来说其实是笔者自己的备忘。

拟线性情形

一般步骤

考虑偏微分方程
$$\begin{equation}\boldsymbol{\alpha}(\boldsymbol{x},u) \cdot \frac{\partial}{\partial \boldsymbol{x}} u = \beta(\boldsymbol{x},u)\end{equation}$$
其中$\boldsymbol{\alpha}$是一个$n$维向量函数,$\beta$是一个标量函数,$\cdot$是向量的点积,$u\equiv u(\boldsymbol{x})$是$n$元函数,$\boldsymbol{x}$是它的自变量。

点击阅读全文...

13 Nov

ARXIV数学论文分布:偏微分方程最热门!

笔者成功地保研到了中山大学的基础数学专业,这个专业自然是比较理论性的,虽然如此,我还会保持着我对数据分析、计算机等方面的兴趣。这几天兴致来了,想做一下结合我的专业跟数据挖掘相结合的研究,所以就爬取了ARXIV上面近五年(2010年到2014年)的数学论文(包含的数据有:标题、分类、年份、月份),想对这几年来数学的“行情”做一下简单的分析。个人认为,ARVIX作为目前全球最大的论文预印本的电子数据库,对它的数据进行分析,所得到的结论是能够具有一定的代表性的。

当然,本文只是用来练手爬虫和基本数据分析的文章,并没有挖掘出特别有价值的信息。文末附录了笔者爬取到的数据,供有兴趣的读者进一步分析研究。

整体情况

这五年来,ARXIV的数学论文总数为135009篇,平均每年27000篇,或者每天74篇。

点击阅读全文...