It is time.
By 苏剑林 | 2015-05-24 | 53665位读者 | 引用终于可以缓一缓了~~
有留意科学空间的朋友可能发现这段时间更新比较缓慢,这一切还得从今年寒假说起...
今年一月底,由于各种原因,结合自己的兴趣,我找了一份实习工作,内容是Python编程。工作是在华南理工大学的论坛上发布的,说的比较简洁,我也比较简洁地投了简历过去,想不到收到回复了,也被录用了。二月上班,进去之后,才发现原来公司还是一家国内比较知名的电商企业,我的主要工作是数据挖掘...虽然我有一点Python的经验,但是数据挖掘基本上不在行的,所以只能够边工作边学习,疯狂恶补数据挖掘的知识。在这个过程中,我学会了很多关于数据挖掘的东西,要知道,在这之前,我不知道什么叫“特征”,什么是“逻辑回归”、“SVM”...那时候真是万千无知。
闲聊:神经网络与深度学习
By 苏剑林 | 2015-06-06 | 68038位读者 | 引用在所有机器学习模型之中,也许最有趣、最深刻的便是神经网络模型了。笔者也想献丑一番,说一次神经网络。当然,本文并不打算从头开始介绍神经网络,只是谈谈我对神经网络的个人理解。如果希望进一步了解神经网络与深度学习的朋友,请移步阅读下面的教程:
http://deeplearning.stanford.edu/wiki/index.php/UFLDL教程
http://blog.csdn.net/zouxy09/article/details/8775360
机器分类
这里以分类工作为例,数据挖掘或机器学习中,有很多分类的问题,比如讲一句话的情况进行分类,粗略点可以分类为“积极”或“消极”,精细点分为开心、生气、忧伤等;另外一个典型的分类问题是手写数字识别,也就是将图片分为10类(0,1,2,3,4,5,6,7,8,9)。因此,也产生了很多分类的模型。
【翻译】巨型望远镜:要继续,就得有牺牲!
By 苏剑林 | 2015-06-10 | 27345位读者 | 引用文章来自:新科学家,这是一篇关于30米望远镜(Thirty Meter Telescope,TMT)的新闻,起因是望远镜的制造遭到当地人的不满,当然背后的原因是很深远的,难以说清楚。更多有关TMT的新闻,可以阅读:http://www.ctmt.org/
夏威夷的巨型望远镜:要继续,就得有牺牲!
四分之一必须离开!在停止了两个月之后,夏威夷的巨型30米望远镜(Thirty Meter Telescope,TMT)重新回归到建设进程——但要牺牲其他望远镜。
由于夏威夷当地居民的抗议声越来越大,早在四月望远镜的建设工作就被迫暂停。与该望远镜相比,目前世界上所有的望远镜都相形见绌——它让能够让天文学家们凝视可见的宇宙的边缘。它位于许多夏威夷人认为是“神圣之地”的死火山莫纳克亚山,因此被夏威夷人认为是一种侮辱——尤其是在山顶已经有十多个望远镜了。
漫话模型|模型与选芒果
By 苏剑林 | 2015-07-15 | 37813位读者 | 引用很多人觉得“模型”、“大数据”、“机器学习”这些字眼很高大很神秘,事实上,它跟我们生活中选水果差不了多少。本文用了几千字,来试图教会大家怎么选芒果...
模型的比喻
假如我要从一批芒果中,找出好吃的那个来。而我不能直接切开芒果尝尝,所以我只能观察芒果,能观察到的量有颜色、表面的气味、大小等等,这些就是我们能够收集到的信息(特征)。
生活中还要很多这样的例子,比如买火柴(可能年轻的城里人还没见过火柴?),如何判断一盒火柴的质量?难道要每根火柴都划划,看看着不着火?显然不行,我们最多也只能划几根,全部划了,火柴也不成火柴了。当然,我们还能看看火柴的样子,闻闻火柴的气味,这些动作是可以接受的。
“熵”不起:从熵、最大熵原理到最大熵模型(三)
By 苏剑林 | 2015-12-20 | 68587位读者 | 引用上集回顾
在上一篇文章中,笔者分享了自己对最大熵原理的认识,包括最大熵原理的意义、最大熵原理的求解以及一些简单而常见的最大熵原理的应用。在上一篇的文末,我们还通过最大熵原理得到了正态分布,以此来说明最大熵原理的深刻内涵和广泛意义。
本文中,笔者将介绍基于最大熵原理的模型——最大熵模型。本文以有监督的分类问题来介绍最大熵模型,所谓有监督,就是基于已经标签好的数据进行的。
事实上,第二篇文章的最大熵原理才是主要的,最大熵模型,实质上只是最大熵原理的一个延伸,或者说应用。
最大熵模型
分类:意味着什么?
在引入最大熵模型之前,我们先来多扯一点东西,谈谈分类问题意味着什么。假设我们有一批标签好的数据:
$$\begin{array}{c|cccccccc}
\hline
\text{数据}x & 1 & 2 & 3 & 4 & 5 & 6 & \dots & 100 \\
\hline
\text{标签}y & 1 & 0 & 1 & 0 & 1 & 0 & \dots & 0\\
\hline \end{array}$$
Coming Back...
By 苏剑林 | 2016-05-15 | 38135位读者 | 引用上一篇博文的发布时间是4月15日,到今天刚好一个月没更新了,但是科学空间的访问量还在。感谢大家对本空间的支持,BoJone对久未更新表示非常抱歉。在恢复更新之前,请允许笔者记记流水账。
在“消失”的一个月中,笔者主要的事情是毕业论文和数据挖掘竞赛。首先毕业论文方面,论文于4月22日交稿,4月29日答辩,答辩完后就意味着毕业论文的事情结束了。我的毕业论文主要写了路径积分在描述随机游走、偏微分方程、随机微分方程的应用。既然是本科论文,就不能说得太晦涩,因此论文整体来看还是比较易读的,可以作为路径积分的入门教程。后面我会略加修改,分开几部分发布在科学空间中的,到时请大家批评指正。
说到路径积分,不得不说到做《量子力学与路径积分》的习题解答这件事情了。很遗憾,这一个多月来,基本没有时间做习题。不过后面我会继续做下去的,已发布的版本,也请有兴趣的读者指出问题。记得年初的时候,朋友问我今年的愿望是什么,我随意地回答了“希望做完一本书的习题”,这本书,当然就是《量子力学与路径积分》了,我相信今年应该能够完成的。
从Boosting学习到神经网络:看山是山?
By 苏剑林 | 2016-07-01 | 64105位读者 | 引用前段时间在潮州给韩师的同学讲文本挖掘之余,涉猎到了Boosting学习算法,并且做了一番头脑风暴,最后把Boosting学习算法的一些本质特征思考清楚了,而且得到一些意外的结果,比如说AdaBoost算法的一些理论证明也可以用来解释神经网络模型这么强大。
AdaBoost算法
Boosting学习,属于组合模型的范畴,当然,与其说它是一个算法,倒不如说是一种解决问题的思路。以有监督的分类问题为例,它说的是可以把弱的分类器(只要准确率严格大于随机分类器)通过某种方式组合起来,就可以得到一个很优秀的分类器(理论上准确率可以100%)。AdaBoost算法是Boosting算法的一个例子,由Schapire在1996年提出,它构造了一种Boosting学习的明确的方案,并且从理论上给出了关于错误率的证明。
以二分类问题为例子,假设我们有一批样本$\{x_i,y_i\},i=1,2,\dots,n$,其中$x_i$是样本数据,有可能是多维度的输入,$y_i\in\{1,-1\}$为样本标签,这里用1和-1来描述样本标签而不是之前惯用的1和0,只是为了后面证明上的方便,没有什么特殊的含义。接着假设我们已经有了一个弱分类器$G(x)$,比如逻辑回归、SVM、决策树等,对分类器的唯一要求是它的准确率要严格大于随机(在二分类问题中就是要严格大于0.5),所谓严格大于,就是存在一个大于0的常数$\epsilon$,每次的准确率都不低于$\frac{1}{2}+\epsilon$。
为什么勒贝格积分比黎曼积分强?
By 苏剑林 | 2016-11-16 | 115337位读者 | 引用学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?
这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。
最近评论