19 Oct

让我们不厌其烦地回顾一下:最小熵原理是一个无监督学习的原理,“熵”就是学习成本,而降低学习成本是我们的不懈追求,所以通过“最小化学习成本”就能够无监督地学习出很多符合我们认知的结果,这就是最小熵原理的基本理念。

这篇文章里,我们会介绍一种相当漂亮的聚类算法,它同样也体现了最小熵原理,或者说它可以通过最小熵原理导出来,名为InfoMap,或者MapEquation。事实上InfoMap已经是2007年的成果了,最早的论文是《Maps of random walks on complex networks reveal community structure》,虽然看起来很旧,但我认为它仍是当前最漂亮的聚类算法,因为它不仅告诉了我们“怎么聚类”,更重要的是给了我们一个“为什么要聚类”的优雅的信息论解释,并从这个解释中直接导出了整个聚类过程。

一个复杂有向图网络示意图。图片来自InfoMap最早的论文《Maps of random walks on complex networks reveal community structure》

一个复杂有向图网络示意图。图片来自InfoMap最早的论文《Maps of random walks on complex networks reveal community structure》

当然,它的定位并不仅仅局限在聚类上,更准确地说,它是一种图网络上的“社区发现”算法。所谓社区发现(Community Detection),大概意思是给定一个有向/无向图网络,然后找出这个网络上的“抱团”情况,至于详细含义,大家可以自行搜索一下。简单来说,它跟聚类相似,但是比聚类的含义更丰富。(还可以参考《什么是社区发现?》

点击阅读全文...

9 Aug

seq2seq之双向解码

在文章《玩转Keras之seq2seq自动生成标题》中我们已经基本探讨过seq2seq,并且给出了参考的Keras实现。

本文则将这个seq2seq再往前推一步,引入双向的解码机制,它在一定程度上能提高生成文本的质量(尤其是生成较长文本时)。本文所介绍的双向解码机制参考自《Synchronous Bidirectional Neural Machine Translation》,最后笔者也是用Keras实现的。

Seq2Seq的双向解码机制图示

背景介绍

研究过seq2seq的读者都知道,常见的seq2seq的解码过程是从左往右逐字(词)生成的,即根据encoder的结果先生成第一个字;然后根据encoder的结果以及已经生成的第一个字,来去生成第二个字;再根据encoder的结果和前两个字,来生成第三个词;依此类推。总的来说,就是在建模如下概率分解
\begin{equation}p(Y|X)=p(y_1|X)p(y_2|X,y_1)p(y_3|X,y_1,y_2)\cdots\label{eq:p}\end{equation}

点击阅读全文...

29 Oct

用ALBERT和ELECTRA之前,请确认你真的了解它们

在预训练语言模型中,ALBERT和ELECTRA算是继BERT之后的两个“后起之秀”。它们从不同的角度入手对BERT进行了改进,最终提升了效果(至少在不少公开评测数据集上是这样),因此也赢得了一定的口碑。但在平时的交流学习中,笔者发现不少朋友对这两个模型存在一些误解,以至于在使用过程中浪费了不必要的时间。在此,笔者试图对这两个模型的一些关键之处做下总结,供大家参考,希望大家能在使用这两个模型的时候少走一些弯路。

ALBERT与ELECTRA

ALBERT与ELECTRA

(注:本文中的“BERT”一词既指开始发布的BERT模型,也指后来的改进版RoBERTa,我们可以将BERT理解为没充分训练的RoBERTa,将RoBERTa理解为更充分训练的BERT。本文主要指的是它跟ALBERT和ELECTRA的对比,因此不区分BERT和RoBERTa。)

点击阅读全文...

8 Feb

多任务学习漫谈(二):行梯度之事

《多任务学习漫谈(一):以损失之名》中,我们从损失函数的角度初步探讨了多任务学习问题,最终发现如果想要结果同时具有缩放不变性和平移不变性,那么用梯度的模长倒数作为任务的权重是一个比较简单的选择。我们继而分析了,该设计等价于将每个任务的梯度单独进行归一化后再相加,这意味着多任务的“战场”从损失函数转移到了梯度之上:看似在设计损失函数,实则在设计更好的梯度,所谓“以损失之名,行梯度之事”。

那么,更好的梯度有什么标准呢?如何设计出更好的梯度呢?本文我们就从梯度的视角来理解多任务学习,试图直接从设计梯度的思路出发构建多任务学习算法。

整体思路

我们知道,对于单任务学习,常用的优化方法就是梯度下降,那么它是怎么推导的呢?同样的思路能不能直接用于多任务学习呢?这便是这一节要回答的问题。

点击阅读全文...

28 Jun

“维度灾难”之Hubness现象浅析

这几天读到论文《Exploring and Exploiting Hubness Priors for High-Quality GAN Latent Sampling》,了解到了一个新的名词“Hubness现象”,说的是高维空间中的一种聚集效应,本质上是“维度灾难”的体现之一。论文借助Hubness的概念得到了一个提升GAN模型生成质量的方案,看起来还蛮有意思。所以笔者就顺便去学习了一下Hubness现象的相关内容,记录在此,供大家参考。

坍缩的球

“维度灾难”是一个很宽泛的概念,所有在高维空间中与相应的二维、三维空间版本出入很大的结论,都可以称之为“维度灾难”,比如《n维空间下两个随机向量的夹角分布》中介绍的“高维空间中任何两个向量几乎都是垂直的”。其中,有不少维度灾难现象有着同一个源头——“高维空间单位球与其外切正方体的体积之比逐渐坍缩至0”,包括本文的主题“Hubness现象”亦是如此。

点击阅读全文...

5 Dec

智能家居之小爱同学控制极米投影仪的简单方案

前段时间买了一个极米投影仪,开始折腾才发现极米跟小米基本没啥关系,它根本无法跟小爱同学互动。在众多名字带“米”的品牌中,极米是为数不多的无法接入米家生态的品牌,想必有不少用户开始都会被极米这个名字误导,关键是极米投影仪还在小米商城上有得卖(捂脸)。

买都买了,还过了七天无理由,退是退不成了,只能试着折腾一下,看看能不能强行互动。

现有方案

首先网上搜了一下,网友给出的参考方案大体上有几种,一种是用“米家智能插座 + 上电自动开机”来控制开关机(事实上主要的联动就是开关机了),一种是接入Home Assistant后通过ADB控制,还有一种是修改遥控器,给遥控器加入红外模块,继而用小爱同学的红外遥控功能。

点击阅读全文...

14 Jul

当生成模型肆虐:互联网将有“疯牛病”之忧?

众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?

近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文一起学习这篇论文,探讨其可能带来的影响。

点击阅读全文...

14 Nov

当Batch Size增大时,学习率该如何随之变化?

随着算力的飞速进步,有越多越多的场景希望能够实现“算力换时间”,即通过堆砌算力来缩短模型训练时间。理想情况下,我们希望投入$n$倍的算力,那么达到同样效果的时间则缩短为$1/n$,此时总的算力成本是一致的。这个“希望”看上去很合理和自然,但实际上并不平凡,即便我们不考虑通信之类的瓶颈,当算力超过一定规模或者模型小于一定规模时,增加算力往往只能增大Batch Size。然而,增大Batch Size一定可以缩短训练时间并保持效果不变吗?

这就是接下来我们要讨论的话题:当Batch Size增大时,各种超参数尤其是学习率该如何调整,才能保持原本的训练效果并最大化训练效率?我们也可以称之为Batch Size与学习率之间的Scaling Law。

方差视角

直觉上,当Batch Size增大时,每个Batch的梯度将会更准,所以步子就可以迈大一点,也就是增大学习率,以求更快达到终点,缩短训练时间,这一点大体上都能想到。问题就是,增大多少才是最合适的呢?

点击阅读全文...