在本系列的前面几篇文章中,我们已经从多个角度来理解了VAE,一般来说,用VAE是为了得到一个生成模型,或者是做更好的编码模型,这都是VAE的常规用途。但除了这些常规应用外,还有一些“小众需求”,比如用来估计$x$的概率密度,这在做压缩的时候通常会用到。

本文就从估计概率密度的角度来了解和推导一下VAE模型。

两个问题 #

所谓估计概率密度,就是在已知样本$x_1,x_2,\cdots,x_N\sim \tilde{p}(x)$的情况下,用一个待定的概率密度簇$q_{\theta}(x)$去拟合这批样本,拟合的目标一般是最小化负对数似然:
\begin{equation}\mathbb{E}_{x\sim \tilde{p}(x)}[-\log q_{\theta}(x)] = -\frac{1}{N}\sum_{i=1}^N \log q_{\theta}(x_i)\label{eq:mle}\end{equation}
但这纯粹都只是理论形式,还有诸多问题没有解决,主要可以归为两个大问题:

1、用什么样的$q_{\theta}(x)$去拟合;

2、用什么方法去求解上述目标。

混合模型 #

第一个问题,我们自然是希望$q_{\theta}(x)$的拟合能力越强越好,最好它有能力拟合所有概率分布。然而很遗憾的是,神经网络虽然理论上有万能拟合能力,但那只是拟合函数的能力,并不是拟合概率分布的能力,概率分布需要满足$q_{\theta}(x)\geq 0$且$\int q_{\theta}(x) dx=1$,后者通常难以保证。

直接的做法做不到,那么我们就往间接的角度想,构建混合模型:
\begin{equation}q_{\theta}(x) = \int q_{\theta}(x|z)q(z)dz=\mathbb{E}_{z\sim q(z)}[q_{\theta}(x|z)]\label{eq:q}\end{equation}
其中$q(z)$通常被选择为无参数的简单分布,比如标准正态分布;而$q_{\theta}(x|z)$则是带参数的、以$z$为条件的简单分布,比如均值、方差跟$z$相关的标准正态分布。

从生成模型的角度来看,上述模型被解释为先从$q(z)$中采样$z$,然后传入$q_{\theta}(x|z)$中生成$x$的两步操作。但本文的焦点是估计概率密度,我们之所以选择这样的$q_{\theta}(x|z)$,是因为它有足够的拟合复杂分布的能力,最后的$q_{\theta}(x)$表示为了多个简单分布$q_{\theta}(x|z)$的平均,了解高斯混合模型的读者应该知道,这样的模型能够起到非常强的拟合能力,甚至理论上能拟合任意分布,所以分布的拟合能力有保证了。

重要采样 #

但式$\eqref{eq:q}$是无法简单积分出来的,或者说只有这种无法简单显式地表达出来的分布,才具有足够强的拟合能力,所以我们要估计它的话,都要按照$\mathbb{E}_{z\sim q(z)}[q_{\theta}(x|z)]$的方式进行采样估计。然而,实际的场景下,$z$和$x$的维度比较高,而高维空间是有“维度灾难”的,这意思是说在高维空间中,我们哪怕采样百万、千万个样本,都很难充分地覆盖高维空间,也就是说很难准确地估计$\mathbb{E}_{z\sim q(z)}[q_{\theta}(x|z)]$。

为此,我们要想办法缩小一下采样空间。首先,我们通常会将$q_{\theta}(x|z)$的方差控制得比较小,这样一来,对于给定$x$,能够使得$q_{\theta}(x|z)$比较大的$z$就不会太多,大多数$z$算出来的$q_{\theta}(x|z)$都非常接近于零。于是我们只需要想办法采样出使得$q_{\theta}(x|z)$比较大的$z$,就可以对$\mathbb{E}_{z\sim q(z)}[q_{\theta}(x|z)]$进行一个比较好的估计了。

具体来说,我们引入一个新的分布$p_{\theta}(z|x)$,假设使得$q_{\theta}(x|z)$比较大的$z$服从该分布,于是我们有
\begin{equation}q_{\theta}(x) = \int q_{\theta}(x|z)q(z)dz=\int q_{\theta}(x|z)\frac{q(z)}{p_{\theta}(z|x)}p_{\theta}(z|x)dz=\mathbb{E}_{z\sim p_{\theta}(z|x)}\left[q_{\theta}(x|z)\frac{q(z)}{p_{\theta}(z|x)}\right]\end{equation}
这样一来我们将从$q(z)$“漫无目的”的采样,转化为从$p_{\theta}(z|x)$的更有针对性的采样。由于$q_{\theta}(x|z)$的方差控制得比较小,所以$p_{\theta}(z|x)$的方差自然也不会大,采样效率是变高了。注意在生成模型视角下,$p_{\theta}(z|x)$被视为后验分布的近似,但是从估计概率密度的视角下,它其实就是一个纯粹的重要性加权函数罢了,不需要特别诠释它的含义。

训练目标 #

至此,我们解决了第一个问题:用什么分布,以及怎么去更好地计算这个分布。剩下的问题就是如何训练了。

其实有了重要性采样的概念后,我们就不用考虑什么ELBO之类的了,直接使用目标$\eqref{eq:mle}$就好,代入$q_{\theta}(x)$的表达式得到
\begin{equation}\mathbb{E}_{x\sim \tilde{p}(x)}\left[-\log \mathbb{E}_{z\sim p_{\theta}(z|x)}\left[q_{\theta}(x|z)\frac{q(z)}{p_{\theta}(z|x)}\right]\right]\end{equation}
事实上,如果$\mathbb{E}_{z\sim p_{\theta}(z|x)}$这一步我们通过重参数只采样一个$z$,那么训练目标就变成
\begin{equation}\mathbb{E}_{x\sim \tilde{p}(x)}\left[-\log q_{\theta}(x|z)\frac{q(z)}{p_{\theta}(z|x)}\right],\quad z\sim p_{\theta}(z|x)\end{equation}
这其实已经就是常规VAE的训练目标了。如果采样$M > 1$个,那么就是
\begin{equation}\mathbb{E}_{x\sim \tilde{p}(x)}\left[-\log \left(\frac{1}{M}\sum_{i=1}^M q_{\theta}(x|z_i)\frac{q(z_i)}{p_{\theta}(z_i|x)}\right)\right],\quad z_1,z_2,\cdots,z_M\sim p_{\theta}(z|x)\end{equation}
这就是“重要性加权自编码器”了,出自《Importance Weighted Autoencoders》,它被视为VAE的加强。总的来说,通过重要性采样的角度,我们可以绕过传统VAE的ELBO等繁琐推导,也可以不用《变分自编码器(二):从贝叶斯观点出发》所介绍的联合分布视角,直接得到VAE模型甚至其改进版。

文章小结 #

本文从估计样本的概率密度这一出发点介绍了变分自编码器VAE,结合重要性采样,我们可以得到VAE的一个快速推导,完全避开ELBO等诸多繁琐细节。

转载到请包括本文地址:https://spaces.ac.cn/archives/8791

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (Dec. 09, 2021). 《变分自编码器(八):估计样本概率密度 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/8791