趣题:与橡皮绳赛跑的蚂蚁
By 苏剑林 | 2014-04-09 | 32054位读者 | 引用如何看费曼的讲义和朗道的教程?
By 苏剑林 | 2014-03-25 | 65749位读者 | 引用本文很荣幸得到了高教社的王超编辑(新浪微博 @朗道集结号 )在微信上的推荐,在此表示十分的感谢。
朗道集结号
朗道、费曼、薛定谔、泡利、狄拉克、温伯格……大师在这里等着你,微信号:ldjjhwx
但是,结合自己在阅读他们的著作的感受,以及自己学习科学的过程,谈谈我对他们的著作的看法。
什么才是最简洁的方式?
相信不少读者觉得朗道的教程比费曼的讲义要深,感觉朗道的书总有大量的数学公式,而费曼的书则轻松一些。笔者开始也有这样的感觉,但是慢慢读下去,才感到费曼的书甚至比朗道的困难。
在进入讨论之前,我们不妨先想一下:什么才是理解物理的最简洁方式?数学越复杂,就越不好吗?
【备忘】访问Google的方法(更新)
By 苏剑林 | 2014-06-04 | 84524位读者 | 引用勾股数的通解及其推广
By 苏剑林 | 2014-07-01 | 21842位读者 | 引用在之前的文章《几何的数与数的几何:超复数的浅探究》中,我们谈及过四元数。四元数源于把复数的$|(a+bi)(c+di)|=|a+bi|\times|c+di|$这一独特的性质进行高维推广。为什么偏爱这一性质?读者或许已经初步知道一些用到复数的这一性质的例子,有几何方面的,也有物理方面的,这一性质为处理模长相关问题带来了美妙的方便。本文介绍它在求三元二次齐次不定方程的整数通解中的应用,这一例子同样展示了复数这一性质的神奇,让我们不得不认同当初哈密顿为了将其推广到高维而不惜耗费十年光阴的努力。
勾股数问题
读者或许已经知道,勾股数,也就是满足
$$x^2+y^2=z^2$$
的所有自然数解,由下面公式给出
$$x=a^2-b^2,\quad y=2ab,\quad z=a^2+b^2$$
齐次多项式不等式的机器证明(差分代换)
By 苏剑林 | 2014-07-06 | 40920位读者 | 引用在高中阶段,笔者也像很多学生一样参加过数学竞赛,而在准备数学竞赛的过程中,也做过一些竞赛题,其中当然少不了不等式题目。当时,面对各种各样的不等式证明题,我总是非常茫然,因为看到答案之后,总感觉证明的构造非常神奇,但是每当我自己独立去做时,却总想不出来。于是后来就萌生了“有没有办法可以通用地证明这些不等式?”的想法。为了实现这个目的,当时就想出了本文的技巧——通过牺牲计算的简便性来换取证明的有效性。后来,我虽然没有走上数学竞赛这条路,但这个方法还是保留了下来,近日,在和数学研发论坛的朋友们讨论不等式问题时,重新拾起了这个技巧。
此前,在本博客的文章《对称多项式不等式的“物理证明”》中,已经谈到了这个技巧,只是限制于当时的知识储备,了解并不深入。而在本文中,则进行拓展了。这个技巧在当时是我自己在证明中独立发现的,而现在在网上查找时发现,前辈们(杨路、姚勇、杨学枝等)早已研究过这个技巧,称之为“差分代换”,并且已经探究过它在机器证明中的作用。该技巧可以很一般化地用于齐次/非其次不等式的证明,限于篇幅,本文只谈齐次多项式不等式,特别地,是对称齐次多项式不等式,并且发现某些可以简化之处。
强大的整数数列网站OEIS
By 苏剑林 | 2014-07-17 | 38821位读者 | 引用OEIS?:http://oeis.org/
近段时间在研究解析数论,进一步感觉数论真是个奇妙的东西,通过它,似乎数学的各个方面——离散的和连续的,实数的和复数的,甚至物理的——都联系了起来。由此也不难体会到当初高斯(Gauss)会说“数学是科学的皇后,数论是数学的皇后。”了。今天,由于在研究素数的个数的上下界问题时,需要思考组合数
$$C_{n}^{2n}=\binom{2n}{n}=\frac{(2n)!}{n!\ n!}$$
最多能被2的多少次方整除。直觉告诉我,次数应该是随着$n$的增大而增大的,但事实却不是,比如$C_{15}^{30}$能够被16整除,但是$C_{20}^{40}$却最多只能被4整除,有种毫无规律的感觉,于是到群里问问各大神。其中,wayne提出
这个可以写个小程序算出一些数据,再在oeis上搜搜
素数之美2:Bertrand假设的证明
By 苏剑林 | 2014-08-09 | 23346位读者 | 引用有了上一篇文章的$\prod\limits_{p\leq n}p < 4^{n-1}$的基础,我们其实已经很接近Bertrand假设的证明了。Bertrand假设的证明基于对二项式系数$C_n^{2n}$的素因子次数的细致考察,而在本篇文章中,我们先得到一个关于素数之积的下限公式,然后由此证明一个比Bertrand假设稍微弱一点的假设。最后,则通过一个简单的技巧,将我们的证明推动至Bertrand假设。
二项式系数的素因子
首先,我们考察$n!$中的素因子$p$的次数,结果是被称为Legendre定理的公式:
$n$中素因子$p$的次数恰好为$\sum\limits_{k\geq 1}\left\lfloor\frac{n}{p^k}\right\rfloor$。
证明很简单,因为$n!=1\times 2\times 3\times 4\times \dots \times n$,每隔$p$就有一个$p$的倍数,每隔$p^2$就有一个$p^2$的倍数,每隔$p^3$就有一个$p^3$的倍数,每增加一次幂,将多贡献一个$p$因子,所以把每个间隔数叠加即可。注意该和虽然写成无穷形式,但是非零项是有限的。
怎么会这么巧!背后的隐藏信息
By 苏剑林 | 2015-01-21 | 36937位读者 | 引用假设我是一名中学数学老师,在给学生兴致勃勃地讲“素数”,讲完素数的定义和相关性质后,正当我接着往下讲时,有个捣蛋的学生提问,“老师,你能不能举一个三位数的素数?”。可是我手头上没有1000以内的素数表,我也没记住超过100的素数,那怎么办呢?我只好在黑板上写出几个三位数,比如173、211、463,然后跟学生说“让我们来检验这些数是不是素数”。最终的结果是:它们都是素数!然后会有学生疑问:怎么会这么巧?
素数的概率
首先的问题是,任意写一个三位数,它是素数的概率是多少?三位数的素数共有143个,三位数共有900个,于是概率应该是143/900,大约是六分之一。看起来挺低的,要“蒙中”似乎不容易。
最近评论