23 Jun

费曼积分法——积分符号内取微分(3)

由于自行车之旅的原因,这篇文章被搁置了一个星期,其实应该在一个星期前就把它写好的。这篇文章继续讲讲费曼积分法的一些例子。读者或许可以从这些不同类型的例子中,发现它应用的基本方向和方法,从而提升对它的认识。

例子2:

$$\int_0^{\infty} \frac{\sin x}{x}dx$$

这也是一种比较常见的类型,它的形式为$\int \frac{f(x)}{x}dx$,对于这种形式,我们的第一感觉就是将其改写成参数形式$\int \frac{f(ax)}{x}dx$,这样的目的很简单,就是把分母给消去了,与$\int \frac{x}{f(x)}dx$的求积思想是一致的。但是深入一点研究就会发现,纵使这样能够消去分母,使得第一次积分变得简单,但是到了第二次积分的时候,我们发现,它又会变回$\int \frac{f(x)}{x}dx$的积分,使我们不能继续进行下去,因此这个取参数的方法大多数情况下都是不行的。

点击阅读全文...

18 Aug

电偶极子浅探(2)

在上一篇文章中,我们已经得到了电偶极子的等势面和电场线方程,这应该可以让我们对电偶极子的力场情况有个大致的了解了。当然,我们还是希望能够求出在这样的一个受力情况下,一个带电粒子是如何运动的。简单起见,在下面的探讨中,我们假定带电粒子的质量和电荷量均为1,至于电荷的正负,可以通过改变在$U=-\frac{k \cos\theta}{r^2}$中的k值的正负来控制。我们使用的工具依旧是理论力学中的欧拉-拉格朗日方程。

也许不少读者始终对公式感到头疼,更不用说是博大精深的理论力学了。但是请相信我,如果你花一点点心思去弄懂用变分法研究力学(或其他物理系统,但我目前只会用于力学)的基本思路和步骤,那么对你的物理研究是大有裨益的。因为在我眼中,学习了一丁点的理论力学知识后,我看到的只有物理的简洁与和谐。有兴趣的朋友可以看看我的那几篇《自然极值》等相关文章。

首先写出动能的表达式:$T=\frac{1}{2} (\dot{r}^2+r^2 \dot{\theta}^2)$

还有势能:$U=-\frac{k \cos\theta}{r^2}$

点击阅读全文...

16 Oct

相对论和量子力学的初探

=====大学学习=====

上大学已经一个多月了,除去军训的两周和国庆放假的一周,到现在已经是第三周上课了。我是数学专业的,由于是那个勷勤创新班,它希望我们都向研究型数学的方向发展,所以给我们“更多的自由研究时间”,所以课程比一般的班还少一点。由于高中已经对高等数学有个大概的了解,所以一开始让很多同学都喊苦的数学分析、解析几何于我而言都还是比较容易接受的。但从另外一个角度上来讲,我感觉我学得快的原因,倒不全是以前的积累,而是因为个人的学习方式。我不喜欢跟着老师的步伐走,我喜欢而且需要深入地思考和理解一个问题,希冀达到一理通百理明的效果,而不是做完一题紧接着下一题。因为我认为这种竞赛式的学习不能给我们带来实质性的进步,而且有可能抹杀了我们的创造力。

1979年爱因斯坦邮票

1979年爱因斯坦邮票

没有应用的数学是很枯燥乏味的,数学不能脱离物理、化学等领域。当然“应用”这个词有很广泛的意思,它不一定在实际生活中起到了立竿见影的作用,而是所有在非数学领域中体现了数学之美的例子都可以叫做数学应用,或者有趣的数学。所以,在经历了一两周纯粹地研究数学之后,我感觉我不能再这样下去了,与其零散地涉猎各个方面的知识,倒不如现在开始就系统地学习一些学科以外的科学知识。于是,我决定重拾高中还没有完成的事情——学习相对论和量子力学——所谓现代物理的两大支柱。

点击阅读全文...

26 Dec

费曼路径积分思想的发展(二)

2、量子力学中的作用量量子化方法

在发现经典电动力学的这个新作用量之后,费曼便试图将它量子化,以期得到一个令人满意的量子电动力学。当时,量子物理学中还没有采用作用量方法。常规的途径是从哈密顿函数开始,用算符来取代经典哈密顿函数中的位置和动量,再应用非对易关系。费曼当时还不知道,狄拉克在1932年的一篇文章中已经将作用量和拉格朗日函数引进了量子力学[9]。正当他百思不得其解时,一位在普林斯頓访问的欧洲学者吿诉他,狄拉克在某某文章中讨论过这一间题。得知此信息后,费曼次日即去图书馆翻阅此文。

狄拉克在1932年的文章中引进了一个非常重要的函数$ < q_{t+dt}|q_t > $,并指出它“相当于” $\exp[\frac{i}{\hbar}Ldt]$[9]。这“意味着”,狄拉克强调:“我们不应该把经典的拉格朗日函数看成是坐标和速度的函数,而应把它看作两个不同时刻t和r+dt的坐标的函数。"[9]在狄拉克思想的启发之下,费曼径直把“相当于”改写为“正比于”:

点击阅读全文...

16 Jan

轻微的扰动——摄动法简介(1)

为了计算实际问题,我们总会采用各种各样的理想模型。一般而言,一个模型越接近实际现象,它往往会越复杂。而忽略掉多数微小的干扰,只保留一些主要的项,这通常可以得到一个相当简单、能够精确解出的模型。以这样的一个可以精确解出的近似模型为基础,逐渐地把微小项的影响添加进去,使得我们的答案越来越准确,这就是摄动法的思想,也称作“微扰理论”。这种方法源于求解天体力学的N体问题,而现在已经发展成为一门相当系统的学科,并应用到了相对多的领域,如量子力学、电子理论等。

其实不难发现,实际问题中存在不少这样的例子,即当我们要计算某个现象时,先考虑最突出的,然后再考虑细节。比如说,要计算地球的轨道,先把它看成一个与太阳组成的纯粹的二体系统,然后把各种微小效应加进去,比如月球的影响、各大行星的影响甚至由于地球的不规则形状所产生的影响等。当然,不仅仅是这一类复杂的“大问题”,我们平常可能会遇到的一些“小问题”有可能也让摄动法派上用场。本文试图将摄动法介绍给各位读者。

摄动法的主要步骤是先忽略微小影响(令小参数为0),求出精确解;然后把所要求的解表达为关于小参数的幂级数。这个方法可以用于解答代数方程、微分方程等等各种领域。下面先以一个简单的代数方程来说明:

一、求解方程:$\varepsilon x^3+x^2=p^2$

点击阅读全文...

13 Mar

单摆运动级数解:初试同伦分析

开始之初,我偶然在图书馆看到了一本名为《超越摄动:同伦分析方法导论》,里边介绍了一种求微分方程近似解的新方法,关键是里边的内容看起来并不是十分难懂,因此我饶有兴致地借来研究了。果然,这是一种非常有趣的方法,在某种意义上来说,还是非常简洁的方法。这解决了我一直以来想要研究的问题:用傅里叶级数来近似描述单摆运动的近似解。当然,它带给我的冲击不仅仅是这些。为了得出周期解,我又同时研究了各种摄动方法的技巧,如消除长期项的PL(Poincaré–Lindstedt)方法。这同时增加了我对各种近似解析方法的了解。从开学到现在快三周的时间,我一直都在研究这些问题。

点击阅读全文...

30 Jul

变分法的一个技巧及其“误用”

不可否认,变分法是非常有用而绝妙的一个数学工具,它“自动地”为我们在众多函数中选出了最优的一个,而免除了具体的分析过程。物理中的最小作用量原理则让变分法有了巨大的用武之地,并反过来也推动了变分法的发展。但是变分法的一个很明显的特点就是在大多数情况下计算相当复杂,甚至如果“蛮干”的话我们几乎连微分方程组都列不出来。因此,一些有用的技巧是很受欢迎的。本文就打算介绍这样的一个小技巧,来让某些变分问题得到一定的化简。

我是怎么得到这个技巧的呢?事实上,那是几个月前我在阅读《引力与时空》时,读到变分原理那一块时我怎么也读不懂,想不明白。明明我觉得是错误的东西,为什么可以得到正确的结果?我的数学直觉告诉我绝对是作者的错,可是我又想不出作者哪里错了,所以就一直把这个问题搁置着。最近我终于得到了自己比较满意的答案,并且窃认为是本文所要讲的这个技巧却被物理学家“误用”了。

技巧

首先来看通常我们是怎么处理变分问题的,以一元函数为例,对于求
$$S=\int L(x,\dot{x},t)dt$$

点击阅读全文...

27 Sep

数学基本技艺之23、24(下)

在上一篇文章中我们得到了第23题的解,本来想接着类似地求第24题,但是看着23题的答案,又好像发现了一些新的东西,故没有继续写下去。等到今天在课堂上花了一节课研究了一下之后,得到了关于这种拟齐次微分方程的一些新的结果,遂另开一篇新文章,与大家分享。

一、特殊拟齐次微分方程的通解

在上一篇文章中,我们求出了拟齐次微分方程$\frac{dy}{dx}=x+\frac{x^3}{y}$的解:
$$(2y+x^2)(x^2-y)^2=C$$
或者写成这样的形式:
$$(y+\frac{1}{2} x^2)(y-x^2)^2=C$$

点击阅读全文...