20 Jun

Ladder Side-Tuning:预训练模型的“过墙梯”

如果说大型的预训练模型是自然语言处理的“张良计”,那么对应的“过墙梯”是什么呢?笔者认为是高效地微调这些大模型到特定任务上的各种技巧。除了直接微调全部参数外,还有像AdapterP-Tuning等很多参数高效的微调技巧,它们能够通过只微调很少的参数来达到接近全量参数微调的效果。然而,这些技巧通常只是“参数高效”而并非“训练高效”,因为它们依旧需要在整个模型中反向传播来获得少部分可训练参数的梯度,说白了,就是可训练的参数确实是少了很多,但是训练速度并没有明显提升。

最近的一篇论文《LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning》则提出了一个新的名为“Ladder Side-Tuning(LST)”的训练技巧,它号称同时达到了参数高效和训练高效。是否真有这么理想的“过墙梯”?本来就让我们一起来学习一下。

点击阅读全文...

6 Jul

生成扩散模型漫谈(二):DDPM = 自回归式VAE

在文章《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中,我们为生成扩散模型DDPM构建了“拆楼-建楼”的通俗类比,并且借助该类比完整地推导了生成扩散模型DDPM的理论形式。在该文章中,我们还指出DDPM本质上已经不是传统的扩散模型了,它更多的是一个变分自编码器VAE,实际上DDPM的原论文中也是将它按照VAE的思路进行推导的。

所以,本文就从VAE的角度来重新介绍一版DDPM,同时分享一下自己的Keras实现代码和实践经验。

多步突破

在传统的VAE中,编码过程和生成过程都是一步到位的:
\begin{equation}\text{编码:}\,\,x\to z\,,\quad \text{生成:}\,\,z\to x\end{equation}

点击阅读全文...

30 Aug

生成扩散模型漫谈(九):条件控制生成结果

前面的几篇文章都是比较偏理论的结果,这篇文章我们来讨论一个比较有实用价值的主题——条件控制生成。

作为生成模型,扩散模型跟VAE、GAN、flow等模型的发展史很相似,都是先出来了无条件生成,然后有条件生成就紧接而来。无条件生成往往是为了探索效果上限,而有条件生成则更多是应用层面的内容,因为它可以实现根据我们的意愿来控制输出结果。从DDPM至今,已经出来了很多条件扩散模型的工作,甚至可以说真正带火了扩散模型的就是条件扩散模型,比如脍炙人口的文生图模型DALL·E 2Imagen

在这篇文章中,我们对条件扩散模型的理论基础做个简单的学习和总结。

技术分析

从方法上来看,条件控制生成的方式分两种:事后修改(Classifier-Guidance)和事前训练(Classifier-Free)。

点击阅读全文...

18 Oct

对于很多读者来说,生成扩散模型可能是他们遇到的第一个能够将如此多的数学工具用到深度学习上的模型。在这个系列文章中,我们已经展示了扩散模型与数学分析、概率统计、常微分方程、随机微分方程乃至偏微分方程等内容的深刻联系,可以说,即便是做数学物理方程的纯理论研究的同学,大概率也可以在扩散模型中找到自己的用武之地。

在这篇文章中,我们再介绍一个同样与数学物理有深刻联系的扩散模型——由“万有引力定律”启发的ODE式扩散模型,出自论文《Poisson Flow Generative Models》(简称PFGM),它给出了一个构建ODE式扩散模型的全新视角。

万有引力

中学时期我们就学过万有引力定律,大概的描述方式是:

两个质点彼此之间相互吸引的作用力,是与它们的质量乘积成正比,并与它们之间的距离成平方反比。

点击阅读全文...

28 Sep

生成扩散模型漫谈(十二):“硬刚”扩散ODE

《生成扩散模型漫谈(五):一般框架之SDE篇》中,我们从SDE的角度理解了生成扩散模型,然后在《生成扩散模型漫谈(六):一般框架之ODE篇》中,我们知道SDE对应的扩散模型中,实际上隐含了一个ODE模型。无独有偶,在《生成扩散模型漫谈(四):DDIM = 高观点DDPM》中我们也知道原本随机采样的DDPM模型中,也隐含了一个确定性的采样过程DDIM,它的连续极限也是一个ODE。

细想上述过程,可以发现不管是“DDPM→DDIM”还是“SDE→ODE”,都是从随机采样模型过渡到确定性模型,而如果我们一开始的目标就是ODE,那么该过程未免显得有点“迂回”了。在本文中,笔者尝试给出ODE扩散模型的直接推导,并揭示了它与雅可比行列式、热传导方程等内容的联系。

微分方程

像GAN这样的生成模型,它本质上是希望找到一个确定性变换,能将从简单分布(如标准正态分布)采样出来的随机变量,变换为特定数据分布的样本。flow模型也是生成模型之一,它的思路是反过来,先找到一个能将数据分布变换简单分布的可逆变换,再求解相应的逆变换来得到一个生成模型。

点击阅读全文...

30 Nov

用热传导方程来指导自监督学习

用理论物理来卷机器学习已经不是什么新鲜事了,比如上个月介绍的《生成扩散模型漫谈(十三):从万有引力到扩散模型》就是经典一例。最近一篇新出的论文《Self-Supervised Learning based on Heat Equation》,顾名思义,用热传导方程来做(图像领域的)自监督学习,引起了笔者的兴趣。这种物理方程如何在机器学习中发挥作用?同样的思路能否迁移到NLP中?让我们一起来读读论文。

基本方程

如下图,左边是物理中热传导方程的解,右端则是CAM积分梯度等显著性方法得到的归因热力图,可以看到两者有一定的相似之处,于是作者认为热传导方程可以作为好的视觉特征的一个重要先验。

热方程的热力图(左)和视觉模型的热力图(右)

热方程的热力图(左)和视觉模型的热力图(右)

点击阅读全文...

15 Dec

书接上文,在《生成扩散模型漫谈(十三):从万有引力到扩散模型》中,我们介绍了一个由万有引力启发的、几何意义非常清晰的ODE式生成扩散模型。有的读者看了之后就疑问:似乎“万有引力”并不是唯一的选择,其他形式的力是否可以由同样的物理绘景构建扩散模型?另一方面,该模型在物理上确实很直观,但还欠缺从数学上证明最后确实能学习到数据分布。

本文就尝试从数学角度比较精确地回答“什么样的力场适合构建ODE式生成扩散模型”这个问题。

基础结论

要回答这个问题,需要用到在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》中我们推导过的一个关于常微分方程对应的分布变化的结论。

考虑$\boldsymbol{x}_t\in\mathbb{R}^d, t\in[0,T]$的一阶(常)微分方程(组)
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}

点击阅读全文...

25 Apr

注意力和Softmax的两点有趣发现:鲁棒性和信息量

最近几周笔者一直都在思考注意力机制的相关性质,在这个过程中对注意力及Softmax有了更深刻的理解。在这篇文章中,笔者简单分享其中的两点:

1、Softmax注意力天然能够抵御一定的噪声扰动;

2、从信息熵角度也可以对初始化问题形成直观理解。

鲁棒性

基于Softmax归一化的注意力机制,可以写为
\begin{equation}o = \frac{\sum\limits_{i=1}^n e^{s_i} v_i}{\sum\limits_{i=1}^n e^{s_i}}\end{equation}
有一天笔者突然想到一个问题:如果往$s_i$中加入独立同分布的噪声会怎样?

点击阅读全文...