14 Oct

【理解黎曼几何】2. 从勾股定理到黎曼度量

黎曼度量

几何,英文名是Geometry,原意是大地测量。既然是测量,就必须有参考物,还有得知道如何计算距离。

有了参照物,我们就可以建立坐标系,把每个点的坐标都写下来,至于计算距离,我们有伟大的勾股定理:
$$ds^2 = dx^2 + dy^2 \tag{1} $$
但这里我们忽略了两个问题。

第一个问题是,我们不一定使用直角坐标系,如果使用极坐标,那么应该是
$$ds^2 = dr^2 + r^2 d\theta^2 \tag{2} $$
因此可以联想,最一般的形式应该是
$$ds^2 = E(x^1, x^2)(dx^1)^2 + 2F(x^1, x^2)dx^1 dx^2 + G(x^1, x^2)(dx^2)^2 \tag{3} $$
这里的$x^1,x^2$是广义坐标,使用上标而不是下标来标记序号,是为了跟传统的教材记号一致。那这公式是什么意思呢?其实很简单,正如我们没理由要求全世界都使用人民币一样,我们没必要要求世界各地都使用同一个坐标系,而更合理的做法是,每一处地方都使用自己的坐标系(局部坐标系),然后给出当地计算距离的方法。因此,上述公式正是说,在位置$(x^1, x^2)$处计算向量$(dx^1, dx^2)$的长度的公式(当地的勾股定理)是$ds^2 = E(x^1, x^2)(dx^1)^2 + 2F(x_1, x_2)dx^1 dx^2 + G(x^1, x^2)(dx^2)^2$。

点击阅读全文...

18 Oct

【理解黎曼几何】5. 黎曼曲率

现在我们来关注黎曼曲率。总的来说,黎曼曲率提供了一种方案,让身处空间内部的人也能计算自身所处空间的弯曲程度。俗话说,“不识庐山真面目,只缘身在此山中”,还有“当局者迷,旁观者清”,等等,因此,能够身处空间之中而发现空间中的弯曲与否,是一件很了不起的事情,就好像我们已经超越了我们现有的空间,到了更高维的空间去“居高临下”那样。真可谓“心有多远,路就有多远,世界就有多远”。

如果站在更高维空间的角度看,就容易发现空间的弯曲。比如弯曲空间中有一条测地线,从更高维的空间看,它就是一条曲线,可以计算曲率等,但是在原来的空间看,它就是直的,测地线就是直线概念的一般化,因此不可能通过这种途径发现空间的弯曲性,必须有一些迂回的途径。可能一下子不容易想到,但是各种途径都殊途同归后,就感觉它是显然的了。

怎么更好地导出黎曼曲率来,使得它能够明显地反映出弯曲空间跟平直空间的本质区别呢?为此笔者思考了很长时间,看了不少参考书(《引力与时空》、《场论》、《引力论》等),比较了几种导出黎曼曲率的方式,简要叙述如下。

点击阅读全文...

21 Oct

【理解黎曼几何】7. 高斯-博内公式

令人兴奋的是,我们导出黎曼曲率的途径,还能够让我们一瞥高斯-博内公式( Gauss–Bonnet formula)的风采,真正体验一番研究内蕴几何的味道。

高斯-博内公式是大范围微分几何学的一个经典的公式,它建立了空间的局部性质和整体性质之间的联系。而我们从一条几何的路径出发,结合一些矩阵变换和数学分析的内容,逐步导出了测地线、协变导数、曲率张量,现在可以还可以得到经典的高斯-博内公式,可见我们在这条路上已经走得足够远了。虽然过程不尽善尽美,然而并没有脱离这个系列的核心:几何直观。本文的目的,正是分享黎曼几何的一种直观思路,既然是思路,以思想交流为主,不以严格证明为目的。因此,对于大家来说,这个系列权当黎曼几何的补充材料吧。

形式改写

首先,我们可以将式$(48)$重写为更有几何意义的形式。从

点击阅读全文...

7 Nov

【外微分浅谈】6. 微分几何

终于开始谈到重点了,就是这部分内容促使我学习外微分的。用外微分可以方便地推导微分几何的一些内容,有时候还能方便计算。其主要根源在于:外微分本身在形式上是微分的推广,因此微分几何的东西能够使用外微分来描述并不出奇;然后,最重要的原因是,外微分把$dx^{\mu}$看成一组基,因此相当于在几何中引入了两组基,一组是本身的向量基(用张量的语言,就是逆变向量的基),这组基可以做对称的内积,另外一组基就是$dx^{\mu}$,这组基可以做反对称的外积。因此,当外微分引入几何时,微分几何就拥有了微分、积分、对称积、反对称积等各种“理想装备”,这就是外微分能够加速微分几何推导的主要原因。

标架的运动

前面已经得到
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{45} $$

点击阅读全文...

16 Nov

为什么勒贝格积分比黎曼积分强?

学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?

黎曼

黎曼

勒贝格

勒贝格

这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。

本是同根生,相煎何太急?

点击阅读全文...

3 Dec

词向量与Embedding究竟是怎么回事?

词向量,英文名叫Word Embedding,按照字面意思,应该是词嵌入。说到词向量,不少读者应该会立马想到Google出品的Word2Vec,大牌效应就是不一样。另外,用Keras之类的框架还有一个Embedding层,也说是将词ID映射为向量。由于先入为主的意识,大家可能就会将词向量跟Word2Vec等同起来,而反过来问“Embedding是哪种词向量?”这类问题,尤其是对于初学者来说,应该是很混淆的。事实上,哪怕对于老手,也不一定能够很好地说清楚。

这一切,还得从one hot说起...

五十步笑百步

one hot,中文可以翻译为“独热”,是最原始的用来表示字、词的方式。为了简单,本文以字为例,词也是类似的。假如词表中有“科、学、空、间、不、错”六个字,one hot就是给这六个字分别用一个0-1编码:
$$\begin{array}{c|c}\hline\text{科} & [1, 0, 0, 0, 0, 0]\\
\text{学} & [0, 1, 0, 0, 0, 0]\\
\text{空} & [0, 0, 1, 0, 0, 0]\\
\text{间} & [0, 0, 0, 1, 0, 0]\\
\text{不} & [0, 0, 0, 0, 1, 0]\\
\text{错} & [0, 0, 0, 0, 0, 1]\\
\hline
\end{array}$$

点击阅读全文...

13 Jan

【中文分词系列】 6. 基于全卷积网络的中文分词

之前已经写过用LSTM来做分词的方案了,今天再来一篇用CNN的,准确来说是FCN,全卷积网络。其实这个模型的主要目的并非研究中文分词,而是练习tensorflow。从两年前就开始用Keras了,可以说对它比较熟了,也渐渐发现了它的一些不足,比如处理变长输入时不方便、加入自定义的约束比较困难等,所以干脆试试原生的tensorflow了,试了之后发现其实也不复杂。嗯,都是python,能有多复杂。本文就是练习一下如何用tensorflow处理不定长输入任务,以中文分词为例,并在最后加入了硬解码将深度学习与词典分词结合了起来

CNN

另外,就是关于FCN的。放到语言任务中看,(一维)卷积其实就是ngram模型,从这个角度来看其实CNN远比RNN来得自然,RNN好像就是为序列任务精心设计的,而CNN则是传统ngram模型的一个延伸。另外不管CNN和RNN都有权值共享,看上去只是为了降低运算量的一个折中选择,但事实上里边大有道理。CNN中的权值共享是平移不变性的必然结果,而不是仅仅是降低运算量的一个选择,试想一下,将一幅图像平移一点点,或者在一个句子前插入一个无意义的空格(导致后面所有字都向后平移了一位),这样应该给出一个相似甚至相同的结果,而这要求卷积必然是权值共享的,即权值不能跟位置有关系。

点击阅读全文...

6 Mar

这个系列慢慢写到第7篇,基本上也把分词的各种模型理清楚了,除了一些细微的调整(比如最后的分类器换成CRF)外,剩下的就看怎么玩了。基本上来说,要速度,就用基于词典的分词,要较好地解决组合歧义何和新词识别,则用复杂模型,比如之前介绍的LSTM、FCN都可以。但问题是,用深度学习训练分词器,需要标注语料,这费时费力,仅有的公开的几个标注语料,又不可能赶得上时效,比如,几乎没有哪几个公开的分词系统能够正确切分出“扫描二维码,关注微信号”来。

本文就是做了这样的一个实验,仅用一个词典,就完成了一个深度学习分词器的训练,居然效果还不错!这种方案可以称得上是半监督的,甚至是无监督的。

点击阅读全文...