Transformer升级之路:9、一种全局长度外推的新思路
By 苏剑林 | 2023-05-12 | 55652位读者 | 引用说到Transformer无法处理超长序列的原因,大家的第一反应通常都是Self Attention的二次复杂度。但事实上,即便忽略算力限制,常规的Transformer也无法处理超长序列,因为它们的长度外推性(Length Extrapolation)并不好,具体表现为当输入序列明显超过训练长度时,模型的效果通常会严重下降。
尽管已有一些相关工作,但长度外推问题离实际解决还比较远。本文介绍笔者构思的一种参考方案,它可能是目前唯一一种可以用在生成模型上、具备全局依赖能力的长度外推方法。
方法回顾
长度外推,也称为长度泛化(Length Generalization),此前我们在《Transformer升级之路:7、长度外推性与局部注意力》、《Transformer升级之路:8、长度外推性与位置鲁棒性》已经介绍过部分工作。然而,它们各有各的问题。
基于量子化假设推导模型的尺度定律(Scaling Law)
By 苏剑林 | 2023-05-18 | 33848位读者 | 引用尺度定律(Scaling Law),指的是模型能力与模型尺度之间的渐近关系。具体来说,模型能力我们可以简单理解为模型的损失函数,模型尺度可以指模型参数量、训练数据量、训练步数等,所谓尺度定律,就是研究损失函数跟参数量、数据量、训练步数等变量的大致关系。《Scaling Laws for Neural Language Models》、《Training Compute-Optimal Large Language Models》等工作的实验结果表明,神经网络的尺度定律多数呈现“幂律(Power law)”的形式。
为什么会是幂律呢?能否从理论上解释呢?论文《The Quantization Model of Neural Scaling》基于“量子化”假设给出了一个颇为有趣的推导。本文一同来欣赏一下。
Transformer升级之路:10、RoPE是一种β进制编码
By 苏剑林 | 2023-07-06 | 123503位读者 | 引用对关心如何扩展LLM的Context长度的读者来说,上周无疑是激动人心的一周,开源社区接连不断地出现令人振奋的成果。首先,网友@kaiokendev在他的项目SuperHOT中实验了“位置线性内插”的方案,显示通过非常少的长文本微调,就可以让已有的LLM处理Long Context。几乎同时,Meta也提出了同样的思路,带着丰富的实验结果发表在论文《Extending Context Window of Large Language Models via Positional Interpolation》上。惊喜还远不止此,随后网友@bloc97提出了NTK-aware Scaled RoPE,实现了不用微调就可以扩展Context长度的效果!
以上种种进展,尤其是NTK-aware Scaled RoPE,迫使笔者去重新思考RoPE的含义。经过分析,笔者发现RoPE的构造可以视为一种$\beta$进制编码,在这个视角之下,开源社区的这些进展可以理解为对进制编码编码的不同扩增方式。
当生成模型肆虐:互联网将有“疯牛病”之忧?
By 苏剑林 | 2023-07-14 | 47852位读者 | 引用众所周知,不管是文本还是视觉领域,各种生成模型正在以无法阻挡的势头“肆虐”互联网。虽然大家都明白,实现真正的通用人工智能(AGI)还有很长的路要走,但这并不妨碍人们越来越频繁地利用生成模型来创作和分享内容。君不见,很多网络文章已经配上了Stable Diffusion模型生成的插图;君不见,很多新闻风格已经越来越显现出ChatGPT的影子。看似无害的这种趋势,正悄然引发了一个问题:我们是否应该对互联网上充斥的生成模型数据保持警惕?
近期发表的论文《Self-Consuming Generative Models Go MAD》揭示了一种令人担忧的可能性,那就是生成模型正在互联网上的无节制扩张,可能会导致一场数字版的“疯牛病”疫情。本文一起学习这篇论文,探讨其可能带来的影响。
语言模型输出端共享Embedding的重新探索
By 苏剑林 | 2023-07-20 | 29009位读者 | 引用预训练刚兴起时,在语言模型的输出端重用Embedding权重是很常见的操作,比如BERT、第一版的T5、早期的GPT,都使用了这个操作,这是因为当模型主干部分不大且词表很大时,Embedding层的参数量很可观,如果输出端再新增一个独立的同样大小的权重矩阵的话,会导致显存消耗的激增。不过随着模型参数规模的增大,Embedding层的占比相对变小了,加之《Rethinking embedding coupling in pre-trained language models》等研究表明共享Embedding可能会有些负面影响,所以现在共享Embedding的做法已经越来越少了。
本文旨在分析在共享Embedding权重时可能遇到的问题,并探索如何更有效地进行初始化和参数化。尽管共享Embedding看起来已经“过时”,但这依然不失为一道有趣的研究题目。
Lion/Tiger优化器训练下的Embedding异常和对策
By 苏剑林 | 2023-08-28 | 28291位读者 | 引用打从在《Tiger:一个“抠”到极致的优化器》提出了Tiger优化器之后,Tiger就一直成为了我训练模型的“标配”优化器。最近笔者已经尝试将Tiger用到了70亿参数模型的预训练之中,前期效果看上来尚可,初步说明Tiger也是能Scale Up的。不过,在查看训练好的模型权重时,笔者发现Embedding出现了一些异常值,有些Embedding的分量达到了$\pm 100$的级别。
经过分析,笔者发现类似现象并不会在Adam中出现,这是Tiger或者Lion这种带符号函数$\text{sign}$的优化器特有的问题,对此文末提供了两种参考解决方案。本文将记录笔者的分析过程,供大家参考。
现象
接下来,我们的分析都以Tiger优化器为例,但分析过程和结论同样适用于Lion。
Transformer升级之路:13、逆用Leaky ReRoPE
By 苏剑林 | 2023-08-14 | 19967位读者 | 引用上周在《Transformer升级之路:12、无限外推的ReRoPE?》中,笔者提出了ReRoPE和Leaky ReRoPE,诸多实验结果表明,它们能够在几乎不损失训练效果的情况下免微调地扩展LLM的Context长度,并且实现了“longer context, lower loss”的理想特性,此外跟NTK-aware Scaled RoPE不同的是,其中ReRoPE似乎还有表现出了无限的Context处理能力。
总之,ReRoPE看起来相当让人满意,但美中不足的是会增加推理成本,具体表现为第一步推理需要算两次Attention,以及后续每步推理需要重新计算位置编码。本文试图通过在训练中逆用Leaky ReRoPE的方法来解决这个问题。
回顾
让我们不厌其烦地重温一下:RoPE形式上是一种绝对位置编码,但实际达到的效果是相对位置编码,对应的相对位置矩阵是:
\begin{equation}\begin{pmatrix}0 & \\
1 & 0 & \\
2 & 1 & 0 &\\
3 & 2 & 1 & 0 & \\
\ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & 3 & 2 & 1 & 0 & \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\small{L - 2} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\small{L - 1} & \small{L - 2} & \ddots & \ddots & \ddots & 3 & 2 & 1 & 0 & \\
\end{pmatrix}\label{eq:rope}\end{equation}
Transformer升级之路:14、当HWFA遇见ReRoPE
By 苏剑林 | 2023-08-24 | 29772位读者 | 引用在上一篇文章《Transformer升级之路:13、逆用Leaky ReRoPE》中,笔者尝试通过在训练阶段逆用Leaky ReRoPE的思路,使得推理阶段的位置编码变为正常的RoPE,从而在达到长度外推的同时解决ReRoPE推理变慢的缺点。遗憾的是,从实验结果来看,“Leaky ReRoPE → RoPE”的效果并不如“RoPE → ReRoPE/Leaky ReRoPE”,因此这个问题尚未完全解决。
此时,笔者想到此前在《Transformer升级之路:9、一种全局长度外推的新思路》提出的HWFA本身就具有一定的长度外推能力,如果跟ReRoPE“强强联合”,是否会有更好的效果?更关键是,HWFA的加入可以大幅度降低推理成本,从而弥补ReRoPE的不足!
温故
首先,“例行公事”地回顾一下HWFA。HWFA(Hybird Window-Full Attention)并非一个具体的模型,而是一种Attention的组合方式,能够在基本保持效果不变的前提下,增强Attention模型的长度外推能力,同时还能降低训练和推理成本。
最近评论