我们在研究地球附近的小天体运动时,如果把天体和地球看作一个二体系统,那最多只能算上一个零级近似,如果使用“地球+月球+小天体”组成的圆形限制性三体问题模型,那可以算上一个二级近似了。那么,一级近似又是什么了。BoJone认为,它就是本文将要讲的“双固定引力中心问题”了,也叫“双不动中心问题”,英文名是two fixed-center problem。这是一种特殊的限制性三体问题。在这个三体系统中,两个主天体(或称有限质量天体)固定不动,第三个小天体在两个固定的主天体吸引下运动。欧拉、拉格朗日、勒让德、雅可比等人很早就研究过这个问题。其中,欧拉最先成功地求出了这个系统的积分。[引用]
另外,双固定引力中心问题还有另外一个应用,在研究人造卫星的运动时,可以只考虑地球引力,但是由于地球不是完美的球体,把其看成一个质点其实不十分精确,要是把它拆分为两个引力源,就可以很大程度上提高精确度。毕竟双固定引力中心问题是完全可以积分的,可以作为一个比较好的中间轨道(介乎圆锥曲线和精确轨道之间的)。
混沌的世界——“星之轨迹”的研究
By 苏剑林 | 2012-01-13 | 38435位读者 | 引用(本文已被刊登在2012年1月的《天文爱好者》上,于笔者而言这是一份很棒的新年礼物!)
在去年第七期《天爱》上,我们看到了N体问题所呈现出来的一些对称、漂亮的周期轨道,这体现了N体问题和谐有序的一面。但是这仅仅是N体问题的冰山一角,笔者也提到过N体问题的本质是混沌、无序的,通俗来讲就是非常乱,无法用数学方程来精确描述。这看起来是一种不完美。但试想,探索当初伽利略将望远镜对准月球后,看到的是如想象中光滑的月面,那么他还会惊叹宇宙的神奇吗?
本文就让我们来更深入地了解一下N体问题的研究历史。
观测&拟合时代
由于人类的自我优越感以及日月星辰东升西落的经验,让我们长期都认为地球是宇宙的中心。第一个比较系统提出地心说的人当属天文学家欧多克斯(Eudoxus,死于公元前347年左右),但他的地心说是非常粗糙的,以至于无法解释很多基本现象,如无法准确预言日食和解释行星逆行等。但亚里士多德接受了地心说,并且由于他在政治和科学上的权威,使地心说免去了夭折的命运。后来托勒密通过他的本轮,完善了地心说,使之延续到了16世纪。
诡异的Dirac函数
By 苏剑林 | 2013-01-14 | 44927位读者 | 引用量子力学中有一个很诡异的函数——Dirac函数,它似乎在物理的不少领域都有很大作用,它也具有明显的物理意义,但认真地看它却又感觉它根本就不是函数!这个“似而非是”的东西究竟是什么呢?让我们从一个物理问题引入:
设想一条质量为1,长度为$2l$的均匀直线,很显然直线的密度为$\rho=\frac{1}{2l}$;将直线的中点放置于坐标轴的原点,我们就有
$$\rho(x)=\left\{ \begin{array}{c}\frac{1}{2l} (-l \leq x \leq l)\\0 (x < -l , x > l)\end{array}\right.$$
所以有
$$\int_{-\infty}^{+\infty} \rho(x)dx=1$$
你见过正方形轮子的自行车吗?一般认为,只有圆形的车轮才能使我们的车子平稳向前移动,但这只是针对平直道路而言的。谁规定路一定是平的?只要铺好一条适当的道路,正方形车轮的自行车照样可以平稳前行!本文就让我们为方轮自行车铺一条路。
其实,方轮自行车已经不是新鲜玩意了,它早已出现在不少科技馆中。从图片中可以看到,它的特殊轨道是有许多段弧组成的,每一段弧的长度等于正方形的边长。车轮前行时,正方形会保持与弧形相切(确保不会打滑)。这样的路的形状是什么曲线呢?很幸运,它并不十分复杂,而且让人意外的是,它就是我们之前已经研究过的“悬链线”!原来,要设计这样的一个曲线的轨道,不需要多么高深的设计师,只需要我们手拿一条铁链,让它自由垂下......
相对论和量子力学的初探
By 苏剑林 | 2012-10-16 | 33732位读者 | 引用=====大学学习=====
上大学已经一个多月了,除去军训的两周和国庆放假的一周,到现在已经是第三周上课了。我是数学专业的,由于是那个勷勤创新班,它希望我们都向研究型数学的方向发展,所以给我们“更多的自由研究时间”,所以课程比一般的班还少一点。由于高中已经对高等数学有个大概的了解,所以一开始让很多同学都喊苦的数学分析、解析几何于我而言都还是比较容易接受的。但从另外一个角度上来讲,我感觉我学得快的原因,倒不全是以前的积累,而是因为个人的学习方式。我不喜欢跟着老师的步伐走,我喜欢而且需要深入地思考和理解一个问题,希冀达到一理通百理明的效果,而不是做完一题紧接着下一题。因为我认为这种竞赛式的学习不能给我们带来实质性的进步,而且有可能抹杀了我们的创造力。
没有应用的数学是很枯燥乏味的,数学不能脱离物理、化学等领域。当然“应用”这个词有很广泛的意思,它不一定在实际生活中起到了立竿见影的作用,而是所有在非数学领域中体现了数学之美的例子都可以叫做数学应用,或者有趣的数学。所以,在经历了一两周纯粹地研究数学之后,我感觉我不能再这样下去了,与其零散地涉猎各个方面的知识,倒不如现在开始就系统地学习一些学科以外的科学知识。于是,我决定重拾高中还没有完成的事情——学习相对论和量子力学——所谓现代物理的两大支柱。
薛定谔方程的启发式推导
By 苏剑林 | 2012-12-11 | 67710位读者 | 引用===聊聊天===
上个月在网上买了三本相对论教材和一本《量子力学概论》,本打算好好研究下相对论的数学体系,可是书到了之后,我却深深地被量子力学吸引住了,不停在研读。而且在研究量子力学的同时,我的线性代数和微分方程知识也增加了不少,这确实是我没有想到的。在我看来,不管是狭义相对论还是广义相对论,它本质上都是一种几何理论,你总要想象从一个参考系观测会发生什么,然后从另外一个参考系又会看到什么;而量子力学虽然对我来讲一切都是新鲜的,但是它的数学性比较强,主要是微分方程的求解和理解。我想这也是我对量子力学更感兴趣的原因吧,因为我善于代数而不善于几何。
量子力学中让我最神往的内容莫过于费曼所发明的路径积分形式。资料记载费曼用他发明的方法在一个晚上就算出了别人几个月才算出来的结果,可见路径积分形式的优越性。当然,我也清楚,这个路径积分并不简单,它涉及到了泛函积分这一非常高深的内容,对于我这个连数学分析都还没有学好的小孩来说,泛函是难以触摸的。不过,我还是尽量想办法向它靠近。为此,我还浏览到了一些不少让人兴奋的内容,比如薛定谔的方程的推导、力学-光学类比、雅可比方程等等。
很遗憾,在正统的量子力学教材中,这些让我很兴奋的内容却鲜有涉及,有的话大多数都是一笔带过的感觉。多数量子力学不会讲到路径积分,就算有也只是作为附录。对于薛定谔方程的推导,也没有涉及到。这也让我养成了一个习惯意识:书本最有趣的东西往往都是在附录。所以对于教科书,那么写得正正式式的内容我一概没有兴趣,那些附录内容才是我最喜欢读的。可是,那些让人兴奋的内容却不一定是很难的,就像下面的薛定谔方程的启发式推导,它不仅不难,而且易于理解。
===薛定谔方程===
在量子力学诞生之前,科学家已经通过实验发现光既有波动性也有粒子性,而德布罗意提出也同时具有波动性和粒子性,这些都奠定了量子力学的基础。根据量子论,一个光子的能量可以由$E=h\nu=\hbar (2\pi \nu)$,其中$\nu$是频率,$\hbar=\frac{h}{2\pi}$,h是普朗克常数,习惯记$\omega=2\pi \nu$,即$E=\hbar \omega$。
费曼路径积分思想的发展(一)
By 苏剑林 | 2012-12-26 | 28276位读者 | 引用注:这是郝刘祥前辈的一篇论文,98年的时候发表在《自然辩证法通讯》上,里边讲述了费曼以及路径积分的相关故事。我从网上下载下来,原文是很粗糙的pdf文件,我特意将它转化为网页文件,供大家欣赏。有些公式很模糊,所以我已经到图书馆查找了原文,但是由于作者非理论物理专业人员,还不确定部分公式是否正确,请读者慎读。原文较长,将分开几篇来发。如果涉及到版权问题,请作者告之(bojone@spaces.ac.cn),我将会尽快处理掉。
自然辩证法通讯(JOURNAL OF DIALECTICS OF NATURE)
第二十卷总115期,1998第3期
郝刘祥
摘要:该文首先阐述了 Richard Feynman为解决经典电动力学的发散问题而做的艰苦努力,进而论述了这种努力的副产品何以使他偏爱作用量表述,以及他是如何在Dirac文章的启发下得到非相对论量子力学的第三种形式--作用量量子化方案的。文章的第三部分叙述了费曼将其方案推广到相对论情形的尝试和费曼图的由来。最后,该文试图就路径积分方法在量子场论等领域中的广泛应用以及费曼对量子场论的重大疑惑作一简要的说明。
关键词:费曼,作用量,几率幅,路径积分
费曼路径积分思想的发展(四)
By 苏剑林 | 2012-12-27 | 38263位读者 | 引用4、量子场论中的泛函方法
路径积分出现之初,大多数物理学家反映都很冷淡,甚至怀疑它的正确性。这一方面是对路径积分方法的陌生与误解所致。在泊珂淖会议上,玻尔就把费曼图误解成粒子运动的轨迹,并对之进行了尖锐的批评。([19],P.459)另一方面,费曼并没有用公理化的方法,从作用量或拉格朗日量出发系统地推导出费曼规则,他是靠经验、猜测、检验和比较来给出与各种图相应的规则的。尽管如此,费曼却能把他的方法推广到当时热门的介子理论,并且只需一个晚上就可解决他人用正则哈密顿方法要用几个月的时间才能解决的问题。费曼方法的有效性,使戴逊大为惊讶,并促使他相信路径积分“必定是根本上正确的”([1],P.54)理论。随之,戴逊便决定把“理解费曼(的思想)并用一种他人能理解的语言来加以阐述”([1],p.54)作为自己的主要工作。1948年,戴逊成功地证明了朝永振一朗、施温格和费曼三人的理论“在其共同适用领域内”[25]的等价性。费曼的粒子图像的路径积分方法由此改头换面,变成了场论形式的泛函积分方法。
最近评论