两本通俗读物:混沌和对称
By 苏剑林 | 2011-05-28 | 17565位读者 | 引用第一本:《天遇——混沌与稳定性的起源》
一个天体力学中的N体问题的研究,竟然发展出了如此多的现代数学理论,这不能不说是一个令人意外的事情。而事实上,N体问题至今仍是无解,这也许并非坏事,因为未被完全攻克,就意味着“N体问题”仍然还是一只“会下金蛋的母鸡”!
本书是普林斯顿文集之一。作者通过大众化的语言,叙述了天体力学和动力系统理论的历史发展,让读者感到其中那激动人心的故事。BoJone认为,要想了解分析动力学(尤其是天体力学)的发展,本书是一本难得的读物。作为混沌和稳定性理论的入门前读物,本书也是非常适合的。读历史的关键是:学会思想!
遐思1:n次代数方程的解可以这样表示吗?
By 苏剑林 | 2011-05-28 | 28901位读者 | 引用打从科学空间建立起,就已经设立了“问题百科”这一个分类,但内容一直都很少,主要是平时太懒去总结一些问题。现在得要养成善于思考、总结的习惯了。
前几天到网上印刷了《天遇》和《无法解出的方程》来阅读,两者都是我很感兴趣的书。想当初在初中阶段阅读《数学史选讲》时,我最感兴趣的就是解方程方面的内容(根式解),通过研究理解了1到4次方程的求根公式,并通过阅读知道了4次以上的代数方程没有一般的根式可解。这在当时是多么值得高兴的一件事情!!
现在,稍稍阅读了《无法解出的方程》后,结合我之前在代数方程方面的一些总结,提出一个问题:
若任意的一元n次方程$\sum_{i=0}^{n} a_i x^i=0$的根记为$x_i=R_{n,i}(a_0,a_1,...,a_n)$
那么,是否存在大于3的n,使得任意的一元(n+1)次方程的根能够用加、减、乘、除、幂、开方以及$R_{j,i}$(j可以是1到n的任意整数)通过有限步骤运算出来?
这个问题可以换一个近似但不等价的说法:
若一元1次、2次、...、n次均可以根式解答,那么一元(n+1)次方程能否有根式解?
也就是说,(n+1)次方程的根能够表示成 1到n次方程的根与加、减、乘、除、幂、开方的有限次运算?
(不考虑前提的正确与否,显然n=4已经不成立了,当时n=5,6,7,8,...等有没有可能呢?)
期待有人能够解决^_^
向量结合复数:常曲率曲线(1)
By 苏剑林 | 2011-06-19 | 29386位读者 | 引用在之前的一篇向量系列的文章中,我们通过结合物理与向量来巧妙地推导出了曲线(包括平面和空间的)的曲率半径为
$$R=\frac{v^2}{a_c}=\frac{|\dot{\vec{r}}|^3}{|\dot{\vec{r}}\times \ddot{\vec{r}}|}\tag{1}$$
曲率则是曲率半径的导数:$\rho=\frac{1}{R}$。我们反过来思考一下:曲率恒定的平面曲线是否只有圆?
答案貌似是很显然的,我们需要证明一下。
由于只是考虑平面情况,我们先设$\dot{\vec{r}}=(v cos\theta,v sin\theta)=z=ve^{i\theta}$,代入(1)得到
$\frac{\dot{\theta}}{v}=\rho$————(2)
cos 1°的根式表达式
By 苏剑林 | 2011-06-26 | 57344位读者 | 引用BoJone记得自己第一次接触三角函数大概是小学五、六年级的时候,那时候我拿来了表姐的初中数学书来看。看到三角函数一章后,饶有兴致,希望能够找到一个根据角度来求三角函数值的方法,可是书本上只是教我去用计算器算和查表,这让我这个爱好计算的孩子大失所望。这个问题直到高一才得以解决,原来这已经涉及到了微积分中的泰勒级数了...
我记得为了求任意角度的三角函数值,我曾经根据30°、45°和60°的正弦值拟合过一条近似公式出来:
$$\sin A \approx \sqrt{\frac{A}{60}-1/4}$$
其中A以角度为单位,大致适用于25°~60°,精度好像有两位小数。当然,这个结果在今天看来是很粗糙的,但是这毕竟是我的“小学的作品”!在此留念一翻。
一道比较函数大小的题目
By 苏剑林 | 2011-07-08 | 21038位读者 | 引用一道整数边三角形题目
By 苏剑林 | 2011-07-19 | 21191位读者 | 引用昨天在研究一个最优化问题时,遇到了一个这样的积分:
$$\int \frac{1}{\cos^3 \theta} d\theta$$
然后就顺便研究了一下这种类型的函数的积分。一般来讲,这类积分可以写成$\int cos^n \theta d\theta$或$\int sin^n \theta d\theta$,其中n是一个整数。
首先我们来解决n=1的情况,我们很容易就有$\int cos\theta d\theta=sin\theta +C$或$\int sin\theta d\theta=-cos\theta +C$,这是一个基本的结果。
如果n是大于1的正整数,那么可以用递推的方法来搞定:
IMO42-1,我也会做几何题
By 苏剑林 | 2011-07-30 | 28224位读者 | 引用七月再次“农忙”,农村里要插秧了,播下种苗,等待再次收获的季节^_^
我一直觉得我的数学能力偏向于分析计算而不擅长于几何,纵使遇到几何问题,也是满脑子的解析几何做法,没有纯几何的美。而这几天为了加强数学竞赛题目的能力,我一直在看IMO的题目,并且企图独立做出一些题目,但都无果。我比较感兴趣的是不等式,我感觉一道简单的式子,不用太多的文字就可以讲清楚的题目非不等式莫属,但是IMO的不等式题实在高深,我还没有能够独立做出一道来(参考答案可以看懂,只是想不到思路),或许是我在努力追求统一的方法而不肯研究那些特定的技巧的原因吧。不料今天看了一下2001年IMO的几何题目,发现我可能将它做出来,于是研究了一会,最终很幸运地做了出来。虽然不是最简单的方法,但也与大家分享一下。
如图,O是锐角三角形ABC的外心,AP是三角形的垂线段,∠B-∠C不小于30°。证明∠BAC+∠BOP < 90°
最近评论