2 Oct

关于行星留周期的几何讨论

关于行星留的周期的计算,我们之前已经讨论过这个问题,利用的是微积分的方法。也许不少还没有高数基础的朋友会感到很头晕,因此在这里给出一个从几何方面讨论的推导。

关于留,很多人认为就是行星相对于地球的速度为0的时刻,其实这个说法稍欠准确,严格来讲应该要将速度改为“角速度”或“切向速度”(天文的切向就是指与视线方向垂直的方向)。实际的运动中,没有哪一瞬间行星相对于地球的运动速度是为0的。根据这句话,我们可以作出下面的图(依旧只考虑正圆运动):

行星留-运动分析

行星留-运动分析

点击阅读全文...

3 Oct

《向量》系列——5.平面向量微分方程与复数

首先我们考虑一个复微分方程
$$\dot{z}=f(z,t)\tag{1}$$如果令$z=x+yi,f(z,t)=f(x+yi,t)=g(x,y,t)+i*h(x,y,t)$,则方程对应于
$$\begin{aligned}\dot{x}=g(x,y,t) \\ \dot{y}=h(x,y,t)\end{aligned}$$
这说明,二元微分方程在一定程度上等价于复微分方程。

点击阅读全文...

4 Oct

哈勃定律——宇宙各向同性的体现

universe_mystery_expand

universe_mystery_expand

1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究。当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系。

不少宇宙学的书籍中都提到了标题,那么,为什么哈勃定律是宇宙各向同性的体现?或者说为什么宇宙各向同性就必然导致哈勃定律?

首先我们得需要了解一下宇宙学原理,它告诉我们宇宙在大尺度范围是均匀的、各向同性的。基于这个原理,我们会得到一些很奇怪的东西,如宇宙中的每一点都是宇宙的中心。另外,我们还可以得到:宇宙的(整体)运动情况在每一个方向都应该取相同的形式。

点击阅读全文...

10 Jul

弹簧双体运动

这也是我们期末考的题目,是理综的物理题之一。

一个零质量的理想弹簧两端分别系着一个质量为m的质点物体(A左B右),现给A一个向右的速度v0,使得整体开始运动。问弹簧压缩到最短时弹性势能是多少?以及B质点的最大速度是多少?

高中生是通过结合动量守恒和能量守恒来求解的。而我希望通过微分方程把握这个运动的整体信息,顺便验证弹簧能否将A的速度v0完全传递给B。

点击阅读全文...

7 Oct

欣赏一张图片——I Heart Math

一张很棒的T恤印花,在心形中融汇了数学各个分支领域中最迷人的结论。
考考大家,能从中认出多少个数学研究问题或结论?

I_Heart_MathhecDetail

I_Heart_MathhecDetail

点击阅读全文...

16 Oct

以自然数幂为系数的幂级数

$\sum_{i=0}^{\infty} a_i x^i=a_0+a_1 x+a_2 x^2+a_3 x^3+...$
最近为了数学竞赛,我研究了有关数列和排列组合的相关问题。由于我讨厌为某个问题而设计专门的技巧,所以我偏爱通用的方法,哪怕过程相对麻烦。因此,我对数学归纳法(递推法)和生成函数法情有独钟。前者只需要列出问题的递归关系,而不用具体分析,最终把问题转移到解函数方程上来。后者则巧妙地把数列${a_n}$与幂级数$\sum_{i=0}^{\infty} a_i x^i$一一对应,巧妙地通过代数运算或微积分运算等得到结果。这里我们不用考虑该级数的敛散性,只需要知道它对应着哪一个“母函数”(母函数展开泰勒级数后得到了级数$\sum_{i=0}^{\infty} a_i x^i$)。显然,这两种方法的最终,都是把问题归结为代数问题。

点击阅读全文...

16 Oct

球壳内部的均匀力场

也许不少同好已经在一些书籍上看到过这样的论述:

各向同性的薄球壳,其内部任意一点所受到来自球壳的引力为0。

这是一个很神奇的事情,因为这意味着这是一个均匀引力场,虽然我们在很多问题上都假设了引力场均匀,但是我们却很难知道如何构造一个真正的均匀引力场(而构造一个真正的均匀力场都分析某些问题是很有用的,例如推导一些比例系数),现在眼前就摆着一个均匀引力场了。并且利用它我们就可以计算均匀实心球内部一点所受到的引力(等于它与一个球体的引力)。而关于它的证明,当然也可以利用微积分的知识,可是我们在这里介绍一个初等的方法,相信它会使我们更加感受到物理的神奇和有趣。

点击阅读全文...

30 Oct

太阳帆技术的粗浅分析(补充)

上星期,BoJone凭借简陋的物理知识,发表了《太阳帆技术的粗浅分析》一文,并转到了牧夫天文论坛上,希冀能够抛砖引玉。很幸运得到了牧夫上的高手的指正。他们指出了我的文章中$a=a_{ray}-a_G > 0$这一条件过于苛刻。因为,除了太阳光压外,还有另外一种力量能够战胜太阳引力——惯性离心力

重新把上篇文章的一个结果列出来:
$$a=a_{ray}-a_G=(\frac{L}{2\pi c (\rho h+{m'}/S)}-GM_{sun})\frac{1}{r^2} $$

点击阅读全文...