6 Oct

2010年诺贝尔化学奖出炉,美日科学家分享

2010年诺贝尔化学奖

2010年诺贝尔化学奖

瑞典皇家科学院6日宣布,因其在有机合成领域中钯催化交叉偶联反应方面进行的卓越研究,将2010年诺贝尔化学奖授予来自美国特拉华大学的海克(Richard F. Heck)、普渡大学的根岸英一(Ei-ichi Negishi),以及日本北海道大学的铃木章(Akira Suzuki)。

点击阅读全文...

6 Oct

《积分公式大全》网络版本

为了方便各位读者查阅,BoJone特意制作了这个积分公式表的电子版本。
数学公式采用JsMath技术显示,为了能够更清晰地显示数学公式,推荐读者下载TeX-fonts字体。

原著的具体说明和下载,请点击

浏览地址:http://kexue.fm/sci/integral/index.html

点击阅读全文...

24 Oct

太阳帆技术的粗浅分析

IKAROS-帆面示意图

IKAROS-帆面示意图

如果说建造天梯对于我们来说遥不可及的话,那么利用太阳帆技术进行太空航行可以说是“近在眉睫”了。通过《天文爱好者》上面的文章,我们能够对太阳帆的技术以及发展有了相当的了解。但是,这仅仅知道了“What(是什么)”和“How(怎么样)”,却还不知道“Why(为什么)”。现在尝试利用我们已经接触过的物理和天文知识,来对太阳帆技术进行一个浅层面的分析。

点击阅读全文...

30 Oct

太阳帆技术的粗浅分析(补充)

上星期,BoJone凭借简陋的物理知识,发表了《太阳帆技术的粗浅分析》一文,并转到了牧夫天文论坛上,希冀能够抛砖引玉。很幸运得到了牧夫上的高手的指正。他们指出了我的文章中$a=a_{ray}-a_G > 0$这一条件过于苛刻。因为,除了太阳光压外,还有另外一种力量能够战胜太阳引力——惯性离心力

重新把上篇文章的一个结果列出来:
$$a=a_{ray}-a_G=(\frac{L}{2\pi c (\rho h+{m'}/S)}-GM_{sun})\frac{1}{r^2} $$

点击阅读全文...

29 Aug

三角半分正方形

印象中我在初一曾从一个美术生好朋友那里学到了一个画椭圆的方法:选取一个矩形,取一组邻边的中点,连接并切除得到的三角形;在剩下的五边形中,继续取邻边中点,连接,切除,得到一个如下图的图形;然后作一个尽可能与下图AG、GH、HI、IJ相切的弧,这个弧就大概为四分之一的椭圆了。

椭圆的美术画法

椭圆的美术画法

点击阅读全文...

5 May

费曼讲座视频分享

传说费曼讲课很精彩,但他是上个世纪的人,所以也就没有多少视频保留下来。但是网上还是存有一些,有兴趣的读者可以收藏。

费曼讲座——光、电子、路径积分(无字幕)
http://v.youku.com/v_show/id_XNjAyMzU4ODg=.html

http://v.youku.com/v_show/id_XNjAyMzQ4NzI=.html

http://v.youku.com/v_show/id_XNTQzMTEyNTA4.html

http://v.youku.com/v_show/id_XNjAyMzQ4MzI=.html

点击阅读全文...

25 Feb

翻到新的维度,把积分解决!

一般来说,如果原函数容易找到的话,牛顿-莱布尼兹公式是定积分的通用方法。但是牛顿-莱布尼兹公式只适合连续函数的积分,如果积分区间含有奇点,那就不成立了。比如,我们考虑积分
$$\int_{-1}^1 \frac{1}{x^2}dx$$
当然,从严格的数学上来说,这种写法是不成立的,因为被积函数在原点没有意义。当然,从物理的角度来考虑,由于对称性,我们确信
$$\int_{-1}^1 \frac{1}{x^2}dx=2\int_{0}^1 \frac{1}{x^2}dx=\lim_{\varepsilon\to 0}2\int_{\varepsilon}^1 \frac{1}{x^2}dx$$
从而得出积分发散的结论。这种处理某种程度上是可以接受的,但是却不是让人满意的,因为它导致了分段。有什么办法可以直接处理这种情况呢?确实有的,同样引入参数,并且最终让参数为0,考虑带参数的积分
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx$$
只要参数为正,这个被积函数就在$\mathbb{R}$上处处连续了,也就是奇点消失了,这样子就可以用牛顿-莱布尼兹公式了
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx=\left.\frac{1}{\varepsilon}\arctan\left(\frac{x}{\varepsilon}\right)\right|_{-1}^{1}$$
考虑$\varepsilon\to 0$的情况,就自动得到了积分发散的结论。

点击阅读全文...

18 Mar

倒立单摆之分离频率

Mathieu方程

在文章《有质动力:倒立单摆的稳定性》中,我们分析了通过高频低幅振荡来使得倒立单摆稳定的可能性,并且得出了运动方程
$$l\ddot{\theta}+[h_0 \omega^2 \cos(\omega t)-g]\sin\theta=0$$

由此对单摆频率的下限提出了要求$\omega \gg \sqrt{\frac{g}{h_0}}$。然而,那个下限只不过是必要的,却不是充分的。如果要完整地分析该单摆的运动方程,最理想的方法当然是写出上述常微分方程的解析解。不过很遗憾,我们并没有办法做到这一点。我们只能够采取各种近似方法来求解。近似方法一般指数值计算方法,然后笔者偏爱的是解析方法,也就是说,即使是近似解,也希望能够求出近似的解析解。

点击阅读全文...