9 Nov

VQ一下Key,Transformer的复杂度就变成线性了

Efficient Transformer,泛指一切致力于降低Transformer的二次复杂度的工作,开始特指针对Attention的改进,后来更一般的思路,如傅里叶变换、线性RNN等,也被归入这个范畴。不得不说,为了降低Transformer的二次复杂度,各路大牛可谓是“八仙过海,各显神通”,各种神奇的思路“百花齐放”,笔者也从中学习到了不少理论知识。然而,尽管Efficient Transformer在理论上是精彩的,但实际上该领域一直都是不愠不火的状态,并没有实际表现十分出色的模型,在LLM火爆的今天,甚至已经逐渐淡出了大家的视野,也淡出了笔者的兴趣范围。

不过,最近有一篇论文《Transformer-VQ: Linear-Time Transformers via Vector Quantization》,却让笔者为之拍案叫绝。作者非常高明地洞察到,只需要对标准Attention的Key做一下VQ(Vector Quantize),复杂度就会自动降低为线性!这种线性化思路保留了标准Attention的形式,是标准Attention到线性Attention的一个完美过渡,同时最大程度上保留了标准Attention的能力。

高效难题

说起来,本站也算是比较早关注Efficient Transformer相关工作了,最早可以追溯到2019年解读Sparse Transformer的一篇博客《为节约而生:从标准Attention到稀疏Attention》。此后,陆续写的关于Efficient Transformer的其他博文还有

点击阅读全文...

12 Dec

注意力机制真的可以“集中注意力”吗?

之前在《Transformer升级之路:3、从Performer到线性Attention》《为什么现在的LLM都是Decoder-only的架构?》等文章中,我们从Attention矩阵的“秩”的角度探讨了Attention机制,并曾经判断线性Attention不如标准Attention的关键原因正是“低秩瓶颈”。然而,这一解释对于双向的Encoder模型或许成立,但却难以适用于单向的Decoder模型,因为Decoder的Attention矩阵的上三角部分是被mask掉的,留下的下三角矩阵必然是满秩的,而既然都是满秩了,那么低秩瓶颈问题似乎就不复存在了。

所以,“低秩瓶颈”并不能完全解释线性Attention的能力缺陷。在这篇文章中,笔者试图寻求另一个角度的解释。简单来说,与标准Attention相比,线性Attention更难“集中注意力”,从而难以准确地定位到关键token,这大概是它效果稍逊一筹的主要原因。

点击阅读全文...

19 Dec

让炼丹更科学一些(一):SGD的平均损失收敛

很多时候我们将深度学习模型的训练过程戏称为“炼丹”,因为整个过程跟古代的炼丹术一样,看上去有一定的科学依据,但整体却给人一种“玄之又玄”的感觉。尽管本站之前也关注过一些优化器相关的工作,甚至也写过《从动力学角度看优化算法》系列,但都是比较表面的介绍,并没有涉及到更深入的理论。为了让以后的炼丹更科学一些,笔者决定去补习一些优化相关的理论结果,争取让炼丹之路多点理论支撑。

在本文中,我们将学习随机梯度下降(SGD)的一个非常基础的收敛结论。虽然现在看来,该结论显得很粗糙且不实用,但它是优化器收敛性证明的一次非常重要的尝试,特别是它考虑了我们实际使用的是随机梯度下降(SGD)而不是全量梯度下降(GD)这一特性,使得结论更加具有参考意义。

问题设置

设损失函数是$L(\boldsymbol{x},\boldsymbol{\theta})$,其实$\boldsymbol{x}$是训练集,而$\boldsymbol{\theta}\in\mathbb{R}^d$是训练参数。受限于算力,我们通常只能执行随机梯度下降(SGD),即每步只能采样一个训练子集来计算损失函数并更新参数,假设采样是独立同分布的,第$t$步采样到的子集为$\boldsymbol{x}_t$,那么我们可以合理地认为实际优化的最终目标是
\begin{equation}L(\boldsymbol{\theta}) = \lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T L(\boldsymbol{x}_t,\boldsymbol{\theta})\label{eq:loss}\end{equation}

点击阅读全文...

26 Jan

Transformer升级之路:16、“复盘”长度外推技术

回过头来看,才发现从第7篇《Transformer升级之路:7、长度外推性与局部注意力》开始,“Transformer升级之路”这个系列就跟长度外推“杠”上了,接连9篇文章(不算本文)都是围绕长度外推展开的。如今,距离第7篇文章刚好是一年多一点,在这一年间,开源社区关于长度外推的研究有了显著进展,笔者也逐渐有了一些自己的理解,比如其实这个问题远不像一开始想象那么简单,以往很多基于局部注意力的工作也不总是有效,这暗示着很多旧的分析工作并没触及问题的核心。

在这篇文章中,笔者尝试结合自己的发现和认识,去“复盘”一下主流的长度外推结果,并试图从中发现免训练长度外推的关键之处。

问题定义

顾名思义,免训练长度外推,就是不需要用长序列数据进行额外的训练,只用短序列语料对模型进行训练,就可以得到一个能够处理和预测长序列的模型,即“Train Short, Test Long”。那么如何判断一个模型能否用于长序列呢?最基本的指标就是模型的长序列Loss或者PPL不会爆炸,更加符合实践的评测则是输入足够长的Context,让模型去预测答案,然后跟真实答案做对比,算BLEU、ROUGE等,LongBench就是就属于这类榜单。

点击阅读全文...

21 Feb

“闭门造车”之多模态思路浅谈(一):无损输入

这篇文章分享一下笔者关于多模态模型架构的一些闭门造车的想法,或者说一些猜测。

最近Google的Gemini 1.5和OpenAI的Sora再次点燃了不少人对多模态的热情,只言片语的技术报告也引起了大家对其背后模型架构的热烈猜测。不过,本文并非是为了凑这个热闹才发出来的,事实上其中的一些思考由来已久,最近才勉强捋顺了一下,遂想写出来跟大家交流一波,刚好碰上了两者的发布。

事先声明,“闭门造车”一词并非自谦,笔者的大模型实践本就“乏善可陈”,而多模态实践更是几乎“一片空白”,本文确实只是根据以往文本生成和图像生成的一些经验所做的“主观臆测”。

问题背景

首先简化一下问题,本文所讨论的多模态,主要指图文混合的双模态,即输入和输出都可以是图文。可能有不少读者的第一感觉是:多模态模型难道不也是烧钱堆显卡,Transformer“一把梭”,最终“大力出奇迹”吗?

点击阅读全文...

27 Feb

配置不同的学习率,LoRA还能再涨一点?

LoRA(Low-Rank Adaptation)是当前LLM的参数高效微调手段之一,此前我们在《梯度视角下的LoRA:简介、分析、猜测及推广》也有过简单讨论。这篇文章我们来学习LoRA的一个新结论:

给LoRA的两个矩阵分配不同的学习率,LoRA的效果还能进一步提升。

该结论出自最近的论文《LoRA+: Efficient Low Rank Adaptation of Large Models》(下称“LoRA+”)。咋看之下,该结论似乎没有什么特别的,因为配置不同的学习率相当于引入了新的超参数,通常来说只要引入并精调超参数都会有提升。“LoRA+”的特别之处在于,它从理论角度肯定了这个必要性,并且断定最优解必然是右矩阵的学习率大于左矩阵的学习率。简而言之,“LoRA+”称得上是理论指导训练并且在实践中确实有效的经典例子,值得仔细学习一番。

结论简析

假设预训练参数为$W_0 \in \mathbb{R}^{n\times m}$,如果使用全量参数微调,那么增量也是一个$n\times m$矩阵。为了降低参数量,LoRA将更新量约束为低秩矩阵,即设$W=W_0 + AB$,其中$A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}$以及有$r\ll \min(n,m)$,用新的$W$替换模型原有参数,然后固定$W_0$不变,训练的时候只更新$A,B$,如下图所示:
$$\style{display: inline-block; width: 24ex; padding: 10ex 0; border: 1px solid #6C8EBF; background-color: #DAE8FC}{W_0\in\mathbb{R}^{n\times m}} \quad + \quad \style{display: inline-block; width: 8ex; padding: 10ex 0; border: 1px solid #D79B00; background-color: #FFE6CC}{A\in\mathbb{R}^{n\times r}}\quad\times\quad \style{display: inline-block; width: 24ex; padding: 3ex 0; border: 1px solid #D79B00; background-color: #FFE6CC}{B\in\mathbb{R}^{r\times m}}$$

点击阅读全文...

7 Mar

用傅里叶级数拟合一维概率密度函数

《“闭门造车”之多模态思路浅谈(一):无损输入》中我们曾提到,图像生成的本质困难是没有一个连续型概率密度的万能拟合器。当然,也不能说完全没有,比如高斯混合模型(GMM)理论上就是可以拟合任意概率密度,就连GAN本质上也可以理解为混合了无限个高斯模型的GMM。然而,GMM尽管理论上的能力是足够的,但它的最大似然估计会很困难,尤其是通常不适用基于梯度的优化器,这限制了它的使用场景。

近日,Google的一篇新论文《Fourier Basis Density Model》针对一维情形,提出了一个新的解决方案——用傅里叶级数来拟合。论文的分析过程颇为有趣,构造形式也很是巧妙,值得学习一番。

问题简述

可能有读者质疑:只研究一维情形有什么价值?确实,如果只考虑图像生成场景,那可能真的价值有限,但一维概率密度估计本身有它的应用价值,如数据的有损压缩,所以它依然是一个值得研究的主题。再者,即便我们需要研究多维的概率密度,也可以通过自回归的方式转化为多个一维的条件概率密度来估计。最后,这个分析和构造过程本身就很值得回味,所以哪怕是仅仅作为一道数学分析题来练习也是相当有益的。

点击阅读全文...

8 Apr

盘点主流的图像扩散模型作品,我们会发现一个特点:当前多数做高分辨率图像生成(下面简称“大图生成”)的工作,都是先通过Encoder变换到Latent空间进行的(即LDM,Latent Diffusion Model),直接在原始Pixel空间训练的扩散模型,大多数分辨率都不超过64*64,而恰好,LDM通过AutoEncoder变换后的Latent,大小通常也不超过64*64。这就自然引出了一系列问题:扩散模型是不是对于高分辨率生成存在固有困难?能否在Pixel空间直接生成高分辨率图像?

论文《Simple diffusion: End-to-end diffusion for high resolution images》尝试回答了这个问题,它通过“信噪比”分析了大图生成的困难,并以此来优化noise schdule,同时提出只需在最低分辨率feature上对架构进行scale up、多尺度Loss等技巧来保证训练效率和效果,这些改动使得原论文成功在Pixel空间上训练了分辨率高达1024*1024的图像扩散模型。

点击阅读全文...