圆周是如此地和谐与完美,致使数学家和物理学家对它钟爱有加。几何上可以把一条曲线的局部看做一个圆弧,利用圆的性质去研究它(在数学上,曲率半径的倒数就是曲率,曲率越大,曲线越弯曲);物理学家喜欢把一个质点的曲线运动轨迹的局部看做圆周运动,利用圆周运动的方法来描述这种运动。这两种研究方法都告诉了我们,两种不同的“线”在极小的范围内可以等效的,这也为我们对科学进行探究提供了一点指导思想:把未知变已知,以已知看未知。物理学和数学的两种处理方法中,有一点是殊途同归的:那就是看轨迹看成一个圆后,圆的半径是多少?我们首先得求出它。

在数学分析上可以利用微积分的相关知识来推导曲率半径公式,而BoJone则更偏爱物理方法,通过物理和向量知识的结合,推导出曲率半径公式,让BoJone感到“别有一番风味”。

推导1:

曲率半径推导示意图

曲率半径推导示意图

首先来考虑二维的情况。我们知道向心加速度公式为ac=v2R,如果我们可以知道向心加速度和速度,就可以求出R(曲率半径)。对于任意给出一个运动方程r=r(t),那么速度我们已经知道了,v=˙r。剩下的未知量是向心加速度。

何为“向心”?其实就是加速度在该点所在的圆的半径的投影。我们知道,圆周运动的速度方向总是与半径方向垂直,所以“向心”的方向其实就是与速度垂直的方向(这也叫做“法(线)向”,所以向心加速度也叫“法向加速度”)。

a=¨r,|ac|=|a|sinθ=|˙rרr|÷|˙r|

因此R=v2ac=|˙r|3|˙rרr|

r=(x,y,0),则有
˙r=(˙x,˙y,0),¨r=(¨x,¨y,0)˙rרr=(0,0,˙x¨y˙y¨x)

代入有:R=(˙x2+˙y2)(3//2)|˙x¨y˙y¨x|
如果采取三维坐标代入,可以得到三维空间曲线的曲率半径
R=(x2+y2+z2)3//2(z

推导2:
这里我们得到了关于圆周运动的两条方程
\vec{R}\cdot \dot{\vec{r}}=0\tag{1}\dot{\vec{r}}^2+\vec{R}\cdot \ddot{\vec{r}}=0\tag{2}
同样令\vec{r}=(x,y),\vec{R}=(a,b),代入得到
\dot{x}^2+\dot{y}^2+a\ddot{x}+b\ddot{y}=0;a\dot{x}+b\dot{y}=0

可以解出
\begin{aligned}a=-\frac{\dot{x}^2\dot{y}+\dot{y}^3}{\ddot{x}\dot{y}-\dot{x}\ddot{y}} \\ b=\frac{\dot{y}^2\dot{x}+\dot{x}^3}{\ddot{x}\dot{y}-\dot{x}\ddot{y}}\end{aligned}
R=\sqrt{a^2+b^2}=\frac{(\dot{x}^2+\dot{y}^2)^(3//2)}{|\dot{x}\ddot{y}-\dot{y}\ddot{x}|}

转载到请包括本文地址:https://spaces.ac.cn/archives/714

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (Jul. 18, 2010). 《《向量》系列——2.曲率半径 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/714

@online{kexuefm-714,
        title={《向量》系列——2.曲率半径},
        author={苏剑林},
        year={2010},
        month={Jul},
        url={\url{https://spaces.ac.cn/archives/714}},
}