Transformer升级之路:14、当HWFA遇见ReRoPE
By 苏剑林 | 2023-08-24 | 32467位读者 | 引用在上一篇文章《Transformer升级之路:13、逆用Leaky ReRoPE》中,笔者尝试通过在训练阶段逆用Leaky ReRoPE的思路,使得推理阶段的位置编码变为正常的RoPE,从而在达到长度外推的同时解决ReRoPE推理变慢的缺点。遗憾的是,从实验结果来看,“Leaky ReRoPE → RoPE”的效果并不如“RoPE → ReRoPE/Leaky ReRoPE”,因此这个问题尚未完全解决。
此时,笔者想到此前在《Transformer升级之路:9、一种全局长度外推的新思路》提出的HWFA本身就具有一定的长度外推能力,如果跟ReRoPE“强强联合”,是否会有更好的效果?更关键是,HWFA的加入可以大幅度降低推理成本,从而弥补ReRoPE的不足!
温故
首先,“例行公事”地回顾一下HWFA。HWFA(Hybird Window-Full Attention)并非一个具体的模型,而是一种Attention的组合方式,能够在基本保持效果不变的前提下,增强Attention模型的长度外推能力,同时还能降低训练和推理成本。
大词表语言模型在续写任务上的一个问题及对策
By 苏剑林 | 2023-09-13 | 31832位读者 | 引用对于LLM来说,通过增大Tokenizer的词表来提高压缩率,从而缩短序列长度、降低解码成本,是大家都喜闻乐见的事情。毕竟增大词表只需要增大Embedding层和输出的Dense层,这部分增加的计算量几乎不可感知,但缩短序列长度之后带来的解码速度提升却是实打实的。当然,增加词表大小也可能会对模型效果带来一些负面影响,所以也不能无节制地增加词表大小。本文就来分析增大词表后语言模型在续写任务上会出现的一个问题,并提出参考的解决方案。
优劣分析
增加词表大小的好处是显而易见的。一方面,由于LLM是自回归的,它的解码会越来越慢,而“增大词表 → 提高压缩率 → 缩短序列长度”,换言之相同文本对应的tokens数变少了,也就是解码步数变少了,从而解码速度提升了;另一方面,语言模型的训练方式是Teacher Forcing,缩短序列长度能够缓解Teacher Forcing带来的Exposure Bias问题,从而可能提升模型效果。
Transformer升级之路:15、Key归一化助力长度外推
By 苏剑林 | 2023-11-20 | 55219位读者 | 引用大体上,我们可以将目前Transformer的长度外推技术分为两类:一类是事后修改,比如NTK-RoPE、YaRN、ReRoPE等,这类方法的特点是直接修改推理模型,无需微调就能达到一定的长度外推效果,但缺点是它们都无法保持模型在训练长度内的恒等性;另一类自然是事前修改,如ALIBI、KERPLE、XPOS以及HWFA等,它们可以不加改动地实现一定的长度外推,但相应的改动需要在训练之前就引入,因此无法不微调地用于现成模型,并且这类方法是否能够Scale Up还没得到广泛认可。
在这篇文章中,笔者将介绍一种意外发现的长度外推方案——“KeyNorm”——对Attention的Key序列做L2 Normalization,很明显它属于事前修改一类,但对Attention机制的修改非常小,因此看上去非常有希望能够Scale Up。
最初动机
之所以说“意外发现”,是因为该改动的原始动机并不是长度外推,而是尝试替换Scaled Dot-Product Attention中的Scale方式。我们知道,Attention的标准定义是(本文主要考虑Causal场景)
\begin{equation}\boldsymbol{o}_i = \frac{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)\boldsymbol{v}_j}{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)},\quad \boldsymbol{q}_i,\boldsymbol{k}_j\in\mathbb{R}^d\label{eq:sdpa}\end{equation}
我在Performer中发现了Transformer-VQ的踪迹
By 苏剑林 | 2023-11-29 | 46278位读者 | 引用前些天我们在《VQ一下Key,Transformer的复杂度就变成线性了》介绍了“Transformer-VQ”,这是通过将Key序列做VQ(Vector Quantize)变换来实现Attention复杂度线性化的方案。诚然,Transformer-VQ提供了标准Attention到线性Attentino的一个非常漂亮的过渡,给人一种“大道至简”的美感,但熟悉VQ的读者应该能感觉到,当编码表大小或者模型参数量进一步增加时,VQ很可能会成为效果提升的瓶颈,因为它通过STE(Straight-Through Estimator)估计的梯度大概率是次优的(FSQ的实验结果也算是提供了一些佐证)。此外,Transformer-VQ为了使训练效率也线性化所做的梯度截断,也可能成为将来的效果瓶颈之一。
为此,笔者花了一些时间思考可以替代掉VQ的线性化思路。从Transformer-VQ的$\exp\left(QC^{\top}\right)$形式中,笔者联想到了Performer,继而“顺藤摸瓜”地发现原来Performer可以视为Soft版的Transformer-VQ。进一步地,笔者尝试类比Performer的推导方法来重新导出Transformer-VQ,为其后的优化提供一些参考结果。
随机分词浅探:从Viterbi Decoding到Viterbi Sampling
By 苏剑林 | 2023-09-16 | 21610位读者 | 引用上一篇文章《大词表语言模型在续写任务上的一个问题及对策》发布后,很快就有读者指出可以在训练阶段引入带有随机性的分词结果来解决同样的问题,并且已经有论文和实现。经过进一步查阅学习,笔者发现这是一个名为Subword Regularization的技巧,最早应用在NMT(机器翻译)中,目前SentencePiece也有相应的实现。看起来这个技巧确实能缓解前述问题,甚至有助于增强语言模型的容错能力,所以就有了将它加进去BytePiece的想法。
那么问题来了,如何将确定性分词改为随机性分词呢?BytePiece是基于Unigram模型的,它通过Viterbi算法找最大概率的分词方案,既然有概率,是否就可以自然地导出随机采样?本文来讨论这个问题,并分享自己的解决方案。
EMO:基于最优传输思想设计的分类损失函数
By 苏剑林 | 2023-10-13 | 55517位读者 | 引用众所周知,分类任务的标准损失是交叉熵(Cross Entropy,等价于最大似然MLE,即Maximum Likelihood Estimation),它有着简单高效的特点,但在某些场景下也暴露出一些问题,如偏离评价指标、过度自信等,相应的改进工作也有很多,此前我们也介绍过一些,比如《再谈类别不平衡问题:调节权重与魔改Loss的对比联系》、《如何训练你的准确率?》、《缓解交叉熵过度自信的一个简明方案》等。由于LLM的训练也可以理解为逐token的分类任务,默认损失也是交叉熵,因此这些改进工作在LLM流行的今天依然有一定的价值。
在这篇文章中,我们介绍一篇名为《EMO: Earth Mover Distance Optimization for Auto-Regressive Language Modeling》的工作,它基于最优传输思想提出了新的改进损失函数EMO,声称能大幅提高LLM的微调效果。其中细节如何?让我们一探究竟。
从梯度最大化看Attention的Scale操作
By 苏剑林 | 2023-10-22 | 71761位读者 | 引用我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。
那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。
已有结果
在《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}
随机分词再探:从Viterbi Sampling到完美采样算法
By 苏剑林 | 2023-10-16 | 33845位读者 | 引用在文章《随机分词浅探:从Viterbi Decoding到Viterbi Sampling》中,笔者提出了一种名为“Viterbi Sampling”的随机分词算法,它只是在求最优解的Viterbi Decoding基础上进行小修改,保留了Viterbi算法的简单快速的特点,相比于已有的Subword Regularization明显更加高效。不过,知乎上的读者 @鶴舞 指出,当前的采样算法可能会在多次二选一“稀释”了部分方案的出现概率,直接后果是原本分数最高的切分并不是以最高概率出现。
经过仔细思考后,笔者发现相应的问题确实存在,当时为了尽快得到一种新的采样算法,在细节上的思考和处理确实比较粗糙。为此,本文将进一步完善Viterbi Sampling算法,并证明完善后的算法在效果上可以跟Subword Regularization等价的。
问题分析
首先,我们来看一下评论原话:
最近评论