29 Jul

生活中的趣味数学:同一天生日概率有多大

新浪科技讯 北京时间7月28日消息,据国外媒体报道,数学经常会让聪明人感觉自己笨得不行,有时甚至会让他们很生气。

事实上,数学本身非常有趣,它是我们日常生活的一部分,每个人都能从中获得享受。只不过在课堂上,数学被一些死板的老师教死板了。以下就是英国《每日邮报》最近公布的日常生活中的趣味数学:

你身上的计算器

从左到右给你的手指编

从左到右给你的手指编

点击阅读全文...

29 Jul

继续观测国际空间站

如果你在夜晚看见一颗明亮的星星在移动着,也许你会猜测那是一架飞机,不过,现在请你再加上一个假设:它或许就是“国际空间站(ISS)”!

上一次已经发表过关于国际空间站的观测了,文章是http://kexue.fm/archives/14/。不过上一次注重的是文章的翻译,这一次才是介绍空间站的观测。

观测首先要了解国际空间站什么时候会在我们头顶经过,会停留多久,否则一切都是空谈!

下面是国际空间站的位置图(刷新就可以查看最新,点击查看大图):

点击阅读全文...

30 Jul

数学歌曲:《歌德巴赫猜》

本来科学为主题的歌曲就不多(中文的就更加少了),数学主题的更加少之又少。难得后弦制作了这一首以“歌德巴赫猜想”为主题的歌曲,尽管主要目的不是唱出数学之美,但还是值得听一下!

试听地址:
http://www.ailrc.com/html/137/WCZZSPH.htm

点击阅读全文...

31 Jul

关于无理数及其和的证明

在中学,有理数的定义为整数和分数的集合,统一来说就是能够写成两个整数之比的数。那相对地,无理数自然就是不能写成两个整数之比的数了,也就是无限不循环小数,比如$\pi,\sqrt{2}$等等。历史上无理数的发现带来了第一次数学危机,并生下了一颗“金蛋”,不过发现者却因此丢掉了生命。让我们永远铭记——希帕索斯(Hippasus)

历史:

http://baike.baidu.com/view/1167.htm#2

在这里对无理数就不多说些什么了,主要是谈谈相关的证明而已。
先说明,以下是我自己的证明方法,当然我相信有一种方法是通用的,但是我没有找出来。

点击阅读全文...

1 Aug

新的一个月:8月了

七月流逝,八月悄来。又迎来新的一个月,今天是第一天,也是建军节。 回味过去的一个月,我学会了很多,也体验了很多,自己似乎更加成熟了。 一切都会过去,一切都会流逝,惟有不变的,是人的情感。

——仅以此记

点击阅读全文...

1 Aug

椭圆的周长与面积

椭圆面积和周长的求法,看上去没有什么区别。不过实际上它们的难度有着天壤之别。

椭圆所包围的面积是$S=\pi ab$,这里的a和b是半长轴和半短轴。仅根据椭圆标准方程就可以推导出来。

目前还没有找到椭圆周长的一般公式,要想精确求解,只有代入以下无穷级数:
$$C=2\pi a [1 - (1/2)^2 (\frac{c}{a})^2 - ({1\cdot 3}/{2\cdot 4})^2{c^4}/{3a^4} - ({1\cdot 3\cdot 5}/{2\cdot 4\cdot 6})^2{c^6}/{5a^6}-...]$$
可以写成:
$$C = 2\pi a \sum_{n=0}^{\infty} { - [\prod_{m=1}^n ({2m-1}/{2m})]^2 {c^{2n}}/{a^{2n}(2n - 1)}}$$

距离c 叫做椭圆的线性离心率,等于从中心到任一焦点的距离

点击阅读全文...

1 Aug

【NASA每日一图】明亮的超新星爆发

一颗耀眼的明星SN 1006

一颗耀眼的明星SN 1006

说明:

一颗耀眼的明星SN 1006。

点击阅读全文...

2 Aug

一道级数求和证明题(非数学归纳法)

今天在数学研发论坛看到了一道题目:

$$\sum_{j=0}^{j=n} (jx^j)={nx^{n+2}-(n+1)x^{n+1}+x}/{(x-1)^2}$$

这道题实际是求$x+2x^2+3x^3+...+nx^n$的求和公式而已。

本来呢用数学归纳法是十分简单的(数学归纳法对于证明简单,对于推导就不行了),但是题目说不能用数学归纳法。只好用以下方法了。

点击阅读全文...