思考:两个椭圆片能粘合成一个立体吗?
By 苏剑林 | 2019-07-21 | 60169位读者 | 引用GELU的两个初等函数近似是怎么来的
By 苏剑林 | 2020-03-26 | 52080位读者 | 引用从动力学角度看优化算法(五):为什么学习率不宜过小?
By 苏剑林 | 2020-10-10 | 55312位读者 | 引用本文的主题是“为什么我们需要有限的学习率”,所谓“有限”,指的是不大也不小,适中即可,太大容易导致算法发散,这不难理解,但为什么太小也不好呢?一个容易理解的答案是,学习率过小需要迭代的步数过多,这是一种没有必要的浪费,因此从“节能”和“加速”的角度来看,我们不用过小的学习率。但如果不考虑算力和时间,那么过小的学习率是否可取呢?Google最近发布在Arxiv上的论文《Implicit Gradient Regularization》试图回答了这个问题,它指出有限的学习率隐式地给优化过程带来了梯度惩罚项,而这个梯度惩罚项对于提高泛化性能是有帮助的,因此哪怕不考虑算力和时间等因素,也不应该用过小的学习率。
对于梯度惩罚,本博客已有过多次讨论,在文章《对抗训练浅谈:意义、方法和思考(附Keras实现)》和《泛化性乱弹:从随机噪声、梯度惩罚到虚拟对抗训练》中,我们就分析了对抗训练一定程度上等价于对输入的梯度惩罚,而文章《我们真的需要把训练集的损失降低到零吗?》介绍的Flooding技巧则相当于对参数的梯度惩罚。总的来说,不管是对输入还是对参数的梯度惩罚,都对提高泛化能力有一定帮助。
BERT可以上几年级了?Seq2Seq“硬刚”小学数学应用题
By 苏剑林 | 2020-10-19 | 68933位读者 | 引用“盈亏问题”、“年龄问题”、“植树问题”、“牛吃草问题”、“利润问题”...,小学阶段你是否曾被各种花样的数学应用题折磨过呢?没关系,现在机器学习模型也可以帮助我们去解答应用题了,来看看它可以上几年级了?
本文将给出一个求解小学数学应用题(Math Word Problem)的baseline,基于ape210k数据集训练,直接用Seq2Seq模型生成可执行的数学表达式,最终Large版本的模型能达到75%的准确率,明显高于ape210k论文所报告的结果。所谓“硬刚”,指的是没有对表达式做特别的转换,也没有通过模板处理,就直接生成跟人类做法相近的可读表达式。
从动力学角度看优化算法(六):为什么SimSiam不退化?
By 苏剑林 | 2020-12-11 | 80638位读者 | 引用自SimCLR以来,CV中关于无监督特征学习的工作层出不穷,让人眼花缭乱。这些工作大多数都是基于对比学习的,即通过适当的方式构造正负样本进行分类学习的。然而,在众多类似的工作中总有一些特立独行的研究,比如Google的BYOL和最近的SimSiam,它们提出了单靠正样本就可以完成特征学习的方案,让人觉得耳目一新。但是没有负样本的支撑,模型怎么不会退化(坍缩)为一个没有意义的常数模型呢?这便是这两篇论文最值得让人思考和回味的问题了。
其中SimSiam给出了让很多人都点赞的答案,但笔者觉得SimSiam也只是把问题换了种说法,并没有真的解决这个问题。笔者认为,像SimSiam、GAN等模型的成功,很重要的原因是使用了基于梯度的优化器(而非其他更强或者更弱的优化器),所以不结合优化动力学的答案都是不完整的。在这里,笔者尝试结合动力学来分析SimSiam不会退化的原因。
SimSiam
在看SimSiam之前,我们可以先看看BYOL,来自论文《Bootstrap your own latent: A new approach to self-supervised Learning》,其学习过程很简单,就是维护两个编码器Student和Teacher,其中Teacher是Student的滑动平均,Student则又反过来向Teacher学习,有种“左脚踩右脚”就可以飞起来的感觉。示意图如下:
你可能不需要BERT-flow:一个线性变换媲美BERT-flow
By 苏剑林 | 2021-01-11 | 208206位读者 | 引用BERT-flow来自论文《On the Sentence Embeddings from Pre-trained Language Models》,中了EMNLP 2020,主要是用flow模型校正了BERT出来的句向量的分布,从而使得计算出来的cos相似度更为合理一些。由于笔者定时刷Arixv的习惯,早在它放到Arxiv时笔者就看到了它,但并没有什么兴趣,想不到前段时间小火了一把,短时间内公众号、知乎等地出现了不少的解读,相信读者们多多少少都被它刷屏了一下。
从实验结果来看,BERT-flow确实是达到了一个新SOTA,但对于这一结果,笔者的第一感觉是:不大对劲!当然,不是说结果有问题,而是根据笔者的理解,flow模型不大可能发挥关键作用。带着这个直觉,笔者做了一些分析,果不其然,笔者发现尽管BERT-flow的思路没有问题,但只要一个线性变换就可以达到相近的效果,flow模型并不是十分关键。
余弦相似度的假设
一般来说,我们语义相似度比较或检索,都是给每个句子算出一个句向量来,然后算它们的夹角余弦来比较或者排序。那么,我们有没有思考过这样的一个问题:余弦相似度对所输入的向量提出了什么假设呢?或者说,满足什么条件的向量用余弦相似度做比较效果会更好呢?
让研究人员绞尽脑汁的Transformer位置编码
By 苏剑林 | 2021-02-03 | 200576位读者 | 引用不同于RNN、CNN等模型,对于Transformer模型来说,位置编码的加入是必不可少的,因为纯粹的Attention模块是无法捕捉输入顺序的,即无法区分不同位置的Token。为此我们大体有两个选择:1、想办法将位置信息融入到输入中,这构成了绝对位置编码的一般做法;2、想办法微调一下Attention结构,使得它有能力分辨不同位置的Token,这构成了相对位置编码的一般做法。
虽然说起来主要就是绝对位置编码和相对位置编码两大类,但每一类其实又能衍生出各种各样的变种,为此研究人员可算是煞费苦心、绞尽脑汁了,此外还有一些不按套路出牌的位置编码。本文就让我们来欣赏一下研究人员为了更好地表达位置信息所构建出来的“八仙过海,各显神通”般的编码方案。
绝对位置编码
形式上来看,绝对位置编码是相对简单的一种方案,但即便如此,也不妨碍各路研究人员的奇思妙想,也有不少的变种。一般来说,绝对位置编码会加到输入中:在输入的第$k$个向量$\boldsymbol{x}_k$中加入位置向量$\boldsymbol{p}_k$变为$\boldsymbol{x}_k + \boldsymbol{p}_k$,其中$\boldsymbol{p}_k$只依赖于位置编号$k$。
Transformer升级之路:1、Sinusoidal位置编码追根溯源
By 苏剑林 | 2021-03-08 | 137299位读者 | 引用最近笔者做了一些理解和改进Transformer的尝试,得到了一些似乎还有价值的经验和结论,遂开一个专题总结一下,命名为“Transformer升级之路”,既代表理解上的深入,也代表结果上的改进。
作为该专题的第一篇文章,笔者将会介绍自己对Google在《Attention is All You Need》中提出来的Sinusoidal位置编码
\begin{equation}\left\{\begin{aligned}&\boldsymbol{p}_{k,2i}=\sin\Big(k/10000^{2i/d}\Big)\\
&\boldsymbol{p}_{k, 2i+1}=\cos\Big(k/10000^{2i/d}\Big)
\end{aligned}\right.\label{eq:sin}\end{equation}
的新理解,其中$\boldsymbol{p}_{k,2i},\boldsymbol{p}_{k,2i+1}$分别是位置$k$的编码向量的第$2i,2i+1$个分量,$d$是向量维度。
作为位置编码的一个显式解,Google在原论文中对它的描述却寥寥无几,只是简单提及了它可以表达相对位置信息,后来知乎等平台上也出现了一些解读,它的一些特点也逐步为大家所知,但总体而言比较零散。特别是对于“它是怎么想出来的”、“非得要这个形式不可吗”等原理性问题,还没有比较好的答案。
因此,本文主要围绕这些问题展开思考,可能在思考过程中读者会有跟笔者一样的感觉,即越思考越觉得这个设计之精妙漂亮,让人叹服~
最近评论