费曼积分法——积分符号内取微分(3)
By 苏剑林 | 2012-06-23 | 53046位读者 | 引用由于自行车之旅的原因,这篇文章被搁置了一个星期,其实应该在一个星期前就把它写好的。这篇文章继续讲讲费曼积分法的一些例子。读者或许可以从这些不同类型的例子中,发现它应用的基本方向和方法,从而提升对它的认识。
例子2:
$$\int_0^{\infty} \frac{\sin x}{x}dx$$
这也是一种比较常见的类型,它的形式为$\int \frac{f(x)}{x}dx$,对于这种形式,我们的第一感觉就是将其改写成参数形式$\int \frac{f(ax)}{x}dx$,这样的目的很简单,就是把分母给消去了,与$\int \frac{x}{f(x)}dx$的求积思想是一致的。但是深入一点研究就会发现,纵使这样能够消去分母,使得第一次积分变得简单,但是到了第二次积分的时候,我们发现,它又会变回$\int \frac{f(x)}{x}dx$的积分,使我们不能继续进行下去,因此这个取参数的方法大多数情况下都是不行的。
费曼积分法——积分符号内取微分(2)
By 苏剑林 | 2012-06-12 | 97041位读者 | 引用上一篇文章我对“费曼积分法”做了一个简单的介绍,并通过举例来初步展示了它的操作步骤。但是,要了解一个方法,除了知道它能够干什么之外,还必须了解它的原理和方法,这样我们才能够更好地掌握它。因此,我们需要建立“积分符号内取微分”的一般理论,为进一步的应用奠基。
一般原理
我们记
$$G(a)=\int_{m(a)}^{n(a)} f(x,a)dx$$
在这里,f(x,a)是带有参数a的关于x的函数,而积分区间是关于参数a的两个函数,这样的积分也叫变限积分,可以理解为是普通定积分的推广。我们记F(x,a)为f(x,a)的原函数,也就是说$\frac{\partial F(x,a)}{\partial x}=f(x,a)$,那么按照微积分基本定理,我们就有:
$$G(a)=F(n(a),a)-F(m(a),a)$$
指数函数及其展开式孰大孰小?
By 苏剑林 | 2012-03-18 | 29983位读者 | 引用在x>0时,指数函数$f(x)=e^x$与幂函数$h_n (x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}$孰大孰小?
对于已经学习了微积分的朋友来说,这道题目是很简单的,甚至$f(x) > h_n (x)$可以说是“显然成立的”(因为$e^x$展开式接下来的无穷项都是正数)。但是,这道题目出在了2012年的广州一模理科数学中,就显得不那么简单了,得用初等的方法来证明它。而笔者最近养成了一个习惯,拿到一张数学试卷,不是先做选择题,而是先做最后一题。所以在参加广州一模时,先花了半个小时把最后一题(即本题)解决了。下面是我想到的三种解法。
一、数学归纳法
2012北约自主招生数学
By 苏剑林 | 2012-02-12 | 43593位读者 | 引用[欧拉数学]素数定理及加强
By 苏剑林 | 2011-11-19 | 45054位读者 | 引用1798年法国数学家勒让德提出:
$$\pi(n)\sim\frac{n}{\ln n}$$
这个式子被成为“素数定理”(the Prime Number Theorem, PNT)。它表达的是什么意思呢?其中$\pi(N)$指的是不大于N的素数个数,$\frac{N}{\ln N}$是一个计算结果,符号~叫做“渐近趋于”,整个式子意思就是“不大于N的素数个数渐近趋于$\frac{N}{\ln N}$”;简单来讲,就是说$\frac{N}{\ln N}$是$\pi(N)$的一个近似估计。也许有的读者会问为什么不用≈而用~呢?事实上,~包含的意思还有:
$$\lim_{N-\infty} \frac{\pi(N) \ln N}{N}=1$$
[欧拉数学]素数倒数之和
By 苏剑林 | 2011-11-19 | 39103位读者 | 引用上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门!
接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理:
无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!
[欧拉数学]黎曼ζ函数
By 苏剑林 | 2011-11-18 | 51805位读者 | 引用欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!
黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。
[欧拉数学]凸多面体的面、顶、棱公式
By 苏剑林 | 2011-11-17 | 45758位读者 | 引用作为数学史上最高产的数学家(似乎没有之一),欧拉的研究几乎涉及了所有数学领域,包括数论、图论、微积分等,同时他还是一个物理学家,他与拉格朗日首创的变分法使得经典力学的研究达到了一个新的高度。欧拉具有惊人的计算能力和数学直觉,这对他的数学研究帮助极大。现在在很多领域,我们都可以看到不少以欧拉命名的公式、定理。欧拉在数学上极为高产,而且得出了相当多的正确结论,但其中有相当多的结论只是来源于他的数学直觉(创造性思维)以及类比推理,这并非欧拉不追求严谨,而是由于当时数学知识的局限性,难以严密化。还有,研究的顺序是:先得出答案,然后才论证答案!
再者,创造性思维往往令人叫绝,能更加促进我们的思维能力。过多地考虑严格性和技术细节,通常都妨碍了我们得出正确的答案。正如《解题的艺术》中说道:粗略而有灵感的思想可能会引出严格证明;而有时,严格的证明会完全淡化论证的精髓。因此,我们不必在意欧拉证明的不严谨,反而,它是一次完美的视觉与思维享受。正因如此,一些绝妙、非严密、(在某种程度上)不正确的但同时得出了正确结果的数学论证,就被称为“欧拉数学”。事实上,任何人、任何研究都必须经过“欧拉数学”这一不严密的早期阶段。
------------华丽的分割线----------------
下面是一条关于凸多面体的面、顶、棱公式,它属于拓扑学的内容,我们称之为“欧拉公式”。(当然,公式是欧拉的,论证过程只是笔者粗糙地给出的)。
最近评论