SVD(Singular Value Decomposition,奇异值分解)是常见的矩阵分解算法,相信很多读者都已经对它有所了解,此前我们在《低秩近似之路(二):SVD》也专门介绍过它。然而,读者是否想到,SVD竟然还可以求导呢?笔者刚了解到这一结论时也颇感意外,因为直觉上“分解”往往都是不可导的。但事实是,SVD在一般情况下确实可导,这意味着理论上我们可以将SVD嵌入到模型中,并用基于梯度的优化器来端到端训练。
问题来了,既然SVD可导,那么它的导函数长什么样呢?接下来,我们将参考文献《Differentiating the Singular Value Decomposition》,逐步推导SVD的求导公式。
推导基础
假设\boldsymbol{W}是满秩的n\times n矩阵,且全体奇异值两两不等,这是比较容易讨论的情形,后面我们也会讨论哪些条件可以放宽一点。接着,我们设\boldsymbol{W}的SVD为:
\begin{equation}\boldsymbol{W} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\top}\end{equation}
矩阵的有效秩(Effective Rank)
By 苏剑林 | 2025-04-10 | 9899位读者 | 引用秩(Rank)是线性代数中的重要概念,它代表了矩阵的内在维度。然而,数学上对秩的严格定义,很多时候并不完全适用于数值计算场景,因为秩等于非零奇异值的个数,而数学上对“等于零”这件事的理解跟数值计算有所不同,数学上的“等于零”是绝对地、严格地等于零,哪怕是10^{-100}也是不等于零,但数值计算不一样,很多时候10^{-10}就可以当零看待。
因此,我们希望将秩的概念推广到更符合数值计算特性的形式,这便是有效秩(Effective Rank)概念的由来。
误差截断
需要指出的是,目前学术界对有效秩并没有统一的定义,接下来我们介绍的是一些从不同角度切入来定义有效秩的思路。对于实际问题,读者可以自行选择适合的定义来使用。
Muon续集:为什么我们选择尝试Muon?
By 苏剑林 | 2025-02-27 | 29331位读者 | 引用本文解读一下我们最新的技术报告《Muon is Scalable for LLM Training》,里边分享了我们之前在《Muon优化器赏析:从向量到矩阵的本质跨越》介绍过的Muon优化器的一次较大规模的实践,并开源了相应的模型(我们称之为“Moonlight”,目前是一个3B/16B的MoE模型)。我们发现了一个比较惊人的结论:在我们的实验设置下,Muon相比Adam能够达到将近2倍的训练效率。
优化器的工作说多不多,但说少也不少,为什么我们会选择Muon来作为新的尝试方向呢?已经调好超参的Adam优化器,怎么快速切换到Muon上进行尝试呢?模型Scale上去之后,Muon与Adam的性能效果差异如何?接下来将分享我们的思考过程。
低秩近似之路(五):CUR
By 苏剑林 | 2025-01-12 | 19564位读者 | 引用再次回到低秩近似之路上。在《低秩近似之路(四):ID》中,我们介绍了“插值分解(Interpolative Decomposition,ID)”,这是为矩阵\boldsymbol{M}\in\mathbb{R}^{n\times m}寻找\boldsymbol{C}\boldsymbol{Z}形式的近似的过程,其中\boldsymbol{C}\in\mathbb{R}^{n\times r}是矩阵\boldsymbol{M}的若干列,而\boldsymbol{Z}\in\mathbb{R}^{r\times m}是任意矩阵。
这篇文章我们将介绍CUR分解,它跟插值分解的思想一脉相承,都是以原始矩阵的行、列为“骨架”来构建原始矩阵的近似,跟ID只用行或列之一不同,CUR分解同时用到了行和列。
基本定义
其实这不是本站第一次出现CUR分解了。早在《Nyströmformer:基于矩阵分解的线性化Attention方案》我们就介绍过矩阵的Nyström近似,它实际上就是CUR分解,后来在《利用CUR分解加速交互式相似度模型的检索》还介绍了CUR分解在降低交互式相似度模型的检索复杂度的应用。
从谱范数梯度到新式权重衰减的思考
By 苏剑林 | 2024-12-25 | 22938位读者 | 引用在文章《Muon优化器赏析:从向量到矩阵的本质跨越》中,我们介绍了一个名为“Muon”的新优化器,其中一个理解视角是作为谱范数正则下的最速梯度下降,这似乎揭示了矩阵参数的更本质的优化方向。众所周知,对于矩阵参数我们经常也会加权重衰减(Weight Decay),它可以理解为F范数平方的梯度,那么从Muon的视角看,通过谱范数平方的梯度来构建新的权重衰减,会不会能起到更好的效果呢?
那么问题来了,谱范数的梯度或者说导数长啥样呢?用它来设计的新权重衰减又是什么样的?接下来我们围绕这些问题展开。
基础回顾
谱范数(Spectral Norm),又称“2范数”,是最常用的矩阵范数之一,相比更简单的F范数(Frobenius Norm),它往往能揭示一些与矩阵乘法相关的更本质的信号,这是因为它定义上就跟矩阵乘法相关:对于矩阵参数\boldsymbol{W}\in\mathbb{R}^{n\times m},它的谱范数定义为
Muon优化器赏析:从向量到矩阵的本质跨越
By 苏剑林 | 2024-12-10 | 45707位读者 | 引用随着LLM时代的到来,学术界对于优化器的研究热情似乎有所减退。这主要是因为目前主流的AdamW已经能够满足大多数需求,而如果对优化器“大动干戈”,那么需要巨大的验证成本。因此,当前优化器的变化,多数都只是工业界根据自己的训练经验来对AdamW打的一些小补丁。
不过,最近推特上一个名为“Muon”的优化器颇为热闹,它声称比AdamW更为高效,且并不只是在Adam基础上的“小打小闹”,而是体现了关于向量与矩阵差异的一些值得深思的原理。本文让我们一起赏析一番。
低秩近似之路(四):ID
By 苏剑林 | 2024-10-30 | 24326位读者 | 引用这篇文章的主角是ID(Interpolative Decomposition),中文可以称之为“插值分解”,它同样可以理解为是一种具有特定结构的低秩分解,其中的一侧是该矩阵的若干列(当然如果你偏好于行,那么选择行也没什么问题),换句话说,ID试图从一个矩阵中找出若干关键列作为“骨架”(通常也称作“草图”)来逼近原始矩阵。
可能很多读者都未曾听说过ID,即便维基百科也只有几句语焉不详的介绍(链接),但事实上,ID跟SVD一样早已内置在SciPy之中(参考scipy.linalg.interpolative),这侧面印证了ID的实用价值。
基本定义
前三篇文章我们分别介绍了伪逆、SVD、CR近似,它们都可以视为寻找特定结构的低秩近似:
\begin{equation}\mathop{\text{argmin}}_{\text{rank}(\tilde{\boldsymbol{M}})\leq r}\Vert \tilde{\boldsymbol{M}} - \boldsymbol{M}\Vert_F^2\end{equation}
低秩近似之路(三):CR
By 苏剑林 | 2024-10-11 | 24721位读者 | 引用在《低秩近似之路(二):SVD》中,我们证明了SVD可以给出任意矩阵的最优低秩近似。那里的最优近似是无约束的,也就是说SVD给出的结果只管误差上的最小,不在乎矩阵的具体结构,而在很多应用场景中,出于可解释性或者非线性处理等需求,我们往往希望得到具有某些特殊结构的近似分解。
因此,从这篇文章开始,我们将探究一些具有特定结构的低秩近似,而本文将聚焦于其中的CR近似(Column-Row Approximation),它提供了加速矩阵乘法运算的一种简单方案。
问题背景
矩阵的最优r秩近似的一般提法是
\begin{equation}\mathop{\text{argmin}}_{\text{rank}(\tilde{\boldsymbol{M}})\leq r}\Vert \tilde{\boldsymbol{M}} - \boldsymbol{M}\Vert_F^2\label{eq:loss-m2}\end{equation}
最近评论