15 Jul

《新理解矩阵6》:为什么只有方阵有行列式?

学过线性代数的朋友都知道,方阵和非方阵的一个明显不同是,对于方阵我们可以计算它的行列式,如果不是方阵的话,就没有行列式这个概念了。在追求统一和谐的数学系统中,为什么非方阵却没有行列式?也许对于这个问题最恰当的回答是——因为不够美。对于非方阵,其实也可以类似地定义它的行列式,定义出来的东西,跟方阵的行列式具有同样的性质,比如某行乘上一个常数,行列式值也就乘以一个常数,等等;而且还可以把其几何意义保留下来。但是,非方阵的行列式是不够美的,因为对于一个一般的整数元素的方阵,我们的行列式是一个整数;而对于一个一般的整数元素的非方阵,却导致了一个无理数的行列式值。另外,一个也比较重要的原因是,单单是方阵的行列式也够用了。综合以上两个理由,非方阵的行列式就被舍弃不用了。

非方阵的行列式不够漂亮

$n$阶方阵的行列式是每个向量的线性函数,它代表着向量之间的线性相关性;从几何上来讲,它就是向量组成的平行n维体的(有向)体积。我们当然期望非方阵的行列式也保留这些性质,因为只有这样,方阵行列式的那些运算性质才得以保留,比如上面说的,行列式的一行乘上一个常数,行列式值也乘上一个常数。我们考虑$m\times n$的矩阵,其中$ m < n $,我们将它看成是$m$个$n$维向量的组合。最简单的,我们先考虑$1\times 2$矩阵的行列式,也就是二维向量$(a,b)$的行列式。

点击阅读全文...

11 Jan

几何的数与数的几何:超复数的浅探究

这也是我的期末论文之一...全文共17页,包括了四元数的构造方法,初等应用等。附录包括行列式与体积、三维旋转的描述等。使用LaTex进行写作(LaTex会让你爱上数学写作的)

几何的数与数的几何
――超复数的浅探究

摘要
今天,不论是数学还是物理的高维问题,都采用向量分析为基本工具,数学物理中难觅四元数的影子。然而在历史上,四元数的发展有着重要的意义。四元数(Quaternion)运算实际上是向量分析的“鼻祖”,向量点积和叉积的概念也首先出现在四元数的运算中,四元数的诞生还标记着非交换代数的开端。即使是现在,四元数还是计算机描述三维空间旋转问题最简单的工具。另外,作为复数的推广,四元数还为某些复数问题的一般化提供了思路。

本文把矩阵与几何适当地结合起来,利用矩阵行列式$\det (AB) =(\det A)(\det B)$这一性质得出了四元数以及更高维的超复数的生成规律,并讨论了它的一些性质以及它在描述旋转方面的应用。部分证明细节和不完善的思想放到了附录之中。

点击阅读全文...

5 Jan

不确定性原理的矩阵形式

作为量子理论的一个重要定理,不确定性原理总是伴随着物理意义出现的,但是从数学的角度来讲,把不确定性原理的数学形式抽象出来,有助于我们发现更多领域的“不确定性原理”。

本文中,我们将谈及不确定性原理的n维矩阵形式。首先需要解释给大家的是,不确定性原理其实是关于“两个厄密算符与一个单位向量之间的一条不等式”。在量子力学中,厄密算符对应着无穷维的厄密矩阵;而所谓厄密矩阵,就是一个矩阵同时取共轭和转置之后,等于它自身。但是本文讨论一个更简单的情况,那就是n维实矩阵,n维实矩阵中的厄密矩阵就是我们所说的实对称矩阵了。

设$\boldsymbol{x}$是一个$n$维单位向量,即$|\boldsymbol{x}|=1$,而$\boldsymbol{A}$和$\boldsymbol{B}$是n阶实对称矩阵。在量子力学中,$\boldsymbol{x}$就是波函数,但是在这里,它只不过是一个单位实向量;并记$\boldsymbol{I}$是$n$阶单位阵。

考虑
$$\bar{A}=\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x},\bar{B}=\boldsymbol{x}^{T}\boldsymbol{B}\boldsymbol{x}$$
从这些记号可以看出,这些量对应着可观测量的期望值。当然,如果不懂量子力学,可以只看上面的矩阵形式。

点击阅读全文...

28 Dec

矩阵描述三维空间旋转

本节简单介绍用矩阵来描述旋转。在二维平面上,复数无疑是描述旋转的最佳工具;然而推广到三维空间中,却要动用到“四元数”了。为了证明四元数的相关结论,我们需要三维旋转的矩阵描述。最一般的旋转运动为:绕某一根轴旋转$\theta$角度。这样我们就需要三个参数来描述它:确定一根轴至少需要两个参数,确定角度需要一个参数。因此,如果要用“数”来描述三维空间的伸缩和旋转的话,“三元数”显然是不够的,完成这一目的至少需要四元数。这也从另外一个角度反映了三元数的不存在性。

矩阵方法
首先我们认识到,如果旋转轴是坐标轴之一,那么旋转矩阵将是最简单的,比如向量$\boldsymbol{x}=(x_0,y_0,z_0)^{T}$绕$z$轴逆时针旋转$\theta$角后的坐标就可以描述为
$$\begin{equation}
\boldsymbol{R}_{\theta}\boldsymbol{x}\end{equation}$$

点击阅读全文...

26 Dec

高维空间的叉积及其几何意义

向量之间的运算有点积和叉积(Cross Product,向量积、外积),其中点积是比较简单的,而且很容易推广到高维;但是叉积不同,一般来说它只不过是三维空间中的东西。叉积的难以推广在于它的多重含义性,如果将向量及其叉积放到张量里边来看(这属于微分形式的内容),那么三维以上的向量叉积是不存在的;但是如果只是把叉积看成是“由两个向量生成第三个与其正交的向量”的工具的话,那么叉积也是可以高维推广的,而且推广的技巧非常巧妙,与三维空间的叉积也非常相似。

回顾三维空间

为了推广三维空间的叉积,首先回顾三维空间的叉积来源是有益的。叉积起源于四元数乘法,但是从目的性来讲,我们希望构造一个向量$\boldsymbol{w}=(w_1,w_2,w_3)$,使得它与已知的两个不共线的向量$\boldsymbol{u}=(u_1,u_2,u_3),\boldsymbol{v}=(v_1,v_2,v_3)$垂直(正交)。从普适性的角度来讲,我们还希望构造出来的向量没有任何“奇点”,为此,我们只用乘法构造。至于叉积的几何意义,则是后话,毕竟,先达到基本的目的再说。

点击阅读全文...

26 Dec

体积与阿达马不等式

阿达马不等式
设有$n$阶实矩阵$\boldsymbol{A}=(a_{ij})_{n\times n}$,那么它的行列式满足阿达马(Hadamard)不等式
$$\begin{equation}
\left(\det \boldsymbol{A}\right)^2 \leq \prod\limits_{i=1}^{n}\left(a_{1i}^2+a_{2i}^2+\dots+a_{ni}^2\right)
\end{equation}$$

这是阿达马在1893年首先发表的。根据体积就是行列式的说法,上述不等式具有相当明显的几何意义。当$n=2$时,它就是说平行四边形的面积不大于两边长的乘积;当$n=3$时,它就是说平行六面体的体积不大于三条棱长的乘积;高维可以类比。这些结论在几何中几乎都是“显然成立”的东西。因此很难理解为什么这个不等式在1893年才被发现。当然,代数不会接受如此笼统的说法,它需要严格的证明。

点击阅读全文...

25 Dec

《新理解矩阵5》:体积=行列式

在文章《新理解矩阵3》:行列式的点滴中,笔者首次谈及到了行列式的几何意义,它代表了n维的“平行多面体”的“体积”。然而,这篇文章写于我初学矩阵之时,有些论述并不严谨,甚至有些错误。最近笔者在写期末论文的时候,研究了超复数的相关内容,而行列式的几何意义在我的超复数研究中具有重要作用,因此把行列式的几何意义重新研究了一翻,修正了部分错误,故发此文,与大家分享。

一个$n$阶矩阵$A$可以看成是$n$个$n$维列向量$\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_n$的集合
$$A=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_n)$$
从代数的角度来看,这构成了一个矩阵;从几何的角度来看,这$n$个向量可以建立一个平行$n$维体。比如:平行四边形就是“平行二维体”,平行六面体就是“平行三维体”,高阶的只需要相应类比,不需要真正想象出高维空间的立体是什么样。

点击阅读全文...

24 Dec

用二次方程判别式判断正定矩阵

快要学期末了,不少学霸开始忙碌起来了。不过对非学霸的我来说,基本上每天都是一样的,希望把自己感兴趣的东西深入研究下去,因为我觉得,真正学会点有用的东西才是最重要的。数学分析和高等代数老师都要求写课程论文,我也写了我比较感兴趣的“欧拉数学”和“超复数研究”,之后会把这部分内容与大家分享。

虽然学期已经接近尾声了,但是我们的课程还没有上完。事实上,我们的新课一直上到十八周~随着考试的接近,我们的《高等代数》课程也已经要落幕了。最近在上的是二次型方面的内容,讲到正定二次型和正定矩阵。关于正定矩阵的判别,教科书上提供了两个判别方法,一个是基于定义的初等变换,另外一个就是主子式法。前者无可厚非,但是后者我似乎难以理解——它虽然是正确的,但是它很丑,计算量又大。我还没有想清楚主子式法到底有什么好的?在我看来,本文所探讨的基于二次方程判别式的方法才是简单、快捷的。

正定二次型
所谓正定二次型,就是关于n个变量$x_1,x_2,...,x_n$的二次齐次函数,只要$x_i$不全为0,它的值恒为正数。比如
$$2 x_1^2+x_2^2-2 x_1 x_2=x_1^2+(x_2-x_1)^2$$
这是一个比较简单的正定二次型,多元的还有
$$5 x_1^2+x_2^2+5 x_3^2+4 x_1 x_2-8 x_1 x_3-4 x_2 x_3$$

点击阅读全文...