从一个单位向量变换到另一个单位向量的正交矩阵
By 苏剑林 | 2021-06-05 | 39462位读者 | 引用这篇文章我们来讨论一个比较实用的线性代数问题:
给定两个$d$维单位(列)向量$\boldsymbol{a},\boldsymbol{b}$,求一个正交矩阵$\boldsymbol{T}$,使得$\boldsymbol{b}=\boldsymbol{T}\boldsymbol{a}$。
由于两个向量模长相同,所以很显然这样的正交矩阵必然存在,那么,我们怎么把它找出来呢?
二维
不难想象,这本质上就是$\boldsymbol{a},\boldsymbol{b}$构成的二维子平面下的向量变换(比如旋转或者镜面反射)问题,所以我们先考虑$d=2$的情形。
Transformer升级之路:4、二维位置的旋转式位置编码
By 苏剑林 | 2021-05-10 | 88468位读者 | 引用在之前的文章《Transformer升级之路:2、博采众长的旋转式位置编码》中我们提出了旋转式位置编码RoPE以及对应的Transformer模型RoFormer。由于笔者主要研究的领域还是NLP,所以本来这个事情对于笔者来说已经完了。但是最近一段时间,Transformer模型在视觉领域也大火,各种Vision Transformer(ViT)层出不穷,于是就有了问题:二维情形的RoPE应该是怎样的呢?
咋看上去,这个似乎应该只是一维情形的简单推广,但其中涉及到的推导和理解却远比我们想象中复杂,本文就对此做一个分析,从而深化我们对RoPE的理解。
二维RoPE
什么是二维位置?对应的二维RoPE又是怎样的?它的难度在哪里?在这一节中,我们先简单介绍二维位置,然后直接给出二维RoPE的结果和推导思路,在随后的几节中,我们再详细给出推导过程。
Nyströmformer:基于矩阵分解的线性化Attention方案
By 苏剑林 | 2021-02-16 | 41628位读者 | 引用标准Attention的$\mathcal{O}(n^2)$复杂度可真是让研究人员头大。前段时间我们在博文《Performer:用随机投影将Attention的复杂度线性化》中介绍了Google的Performer模型,它通过随机投影的方式将标准Attention转化为线性Attention。无独有偶,前些天Arxiv上放出了AAAI 2021的一篇论文《Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention》,里边又提出了一种从另一个角度把标准Attention线性化的方案。
该方案写的是Nyström-Based,顾名思义是利用了Nyström方法来近似标准Attention的。但是坦白说,在看到这篇论文之前,笔者也完全没听说过Nyström方法,而纵观整篇论文,里边也全是笔者一眼看上去感觉很茫然的矩阵分解推导,理解起来颇为困难。不过有趣的是,尽管作者的推导很复杂,但笔者发现最终的结果可以通过一个相对来说更简明的方式来理解,遂将笔者对Nyströmformer的理解整理在此,供大家参考。
Seq2Seq重复解码现象的理论分析尝试
By 苏剑林 | 2021-01-26 | 29987位读者 | 引用去年笔者写过博文《如何应对Seq2Seq中的“根本停不下来”问题?》,里边介绍了一篇论文中对Seq2Seq解码不停止现象的处理,并指出那篇论文只是提了一些应对该问题的策略,并没有提供原理上的理解。近日,笔者在Arixv读到了AAAI 2021的一篇名为《A Theoretical Analysis of the Repetition Problem in Text Generation》的论文,里边从理论上分析了Seq2Seq重复解码现象。从本质上来看,重复解码和解码不停止其实都是同理的,所以这篇新论文算是填补了前面那篇论文的空白。
经过学习,笔者发现该论文确实有不少可圈可点之处,值得一读。笔者对原论文中的分析过程做了一些精简、修正和推广,将结果记录成此文,供大家参考。此外,抛开问题背景不讲,读者也可以将本文当成一节矩阵分析习题课,供大家复习线性代数哈~
构造一个显式的、总是可逆的矩阵
By 苏剑林 | 2019-03-01 | 40345位读者 | 引用从《恒等式 det(exp(A)) = exp(Tr(A)) 赏析》一文我们得到矩阵$\exp(\boldsymbol{A})$总是可逆的,它的逆就是$\exp(-\boldsymbol{A})$。问题是$\exp(\boldsymbol{A})$只是一个理论定义,单纯这样写没有什么价值,因为它要把每个$\boldsymbol{A}^n$都算出来。
有没有什么具体的例子呢?有,本文来构造一个显式的、总是可逆的矩阵。
其实思路非常简单,假设$\boldsymbol{x},\boldsymbol{y}$是两个$k$维列向量,那么$\boldsymbol{x}\boldsymbol{y}^{\top}$就是一个$k\times k$的矩阵,我们就来考虑
\begin{equation}\begin{aligned}\exp\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)=&\sum_{n=0}^{\infty}\frac{\left(\boldsymbol{x}\boldsymbol{y}^{\top}\right)^n}{n!}\\
=&\boldsymbol{I}+\boldsymbol{x}\boldsymbol{y}^{\top}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{2}+\frac{\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}\boldsymbol{x}\boldsymbol{y}^{\top}}{6}+\dots\end{aligned}\end{equation}
恒等式 det(exp(A)) = exp(Tr(A)) 赏析
By 苏剑林 | 2019-02-18 | 61086位读者 | 引用本文的主题是一个有趣的矩阵行列式的恒等式
\begin{equation}\det(\exp(\boldsymbol{A})) = \exp(\text{Tr}(\boldsymbol{A}))\label{eq:main}\end{equation}
这个恒等式在挺多数学和物理的计算中都出现过,笔者都在不同的文献中看到过好几次了。
注意左端是矩阵的指数,然后求行列式,这两步都是计算量非常大的运算;右端仅仅是矩阵的迹(一个标量),然后再做标量的指数。两边的计算量差了不知道多少倍,然而它们居然是相等的!这不得不说是一个神奇的事实。
所以,本文就来好好欣赏一个这个恒等式。
几年前,笔者曾经以自己对矩阵的粗浅理解写了一个“理解矩阵”系列,其中有一篇《为什么只有方阵有行列式?》讨论了非方阵的行列式问题,里边给出了“非方针的行列式不好看”和“方阵的行列式就够了”的观点。本文来再次思考这个问题。
首先回顾方阵的行列式,其实行列式最重要的价值在于它的几何意义:
n维方阵的行列式的绝对值,等于它的各个行(或列)向量所张成的n维立体的超体积。
这个几何意义是行列式的一切重要性的源头,相关的讨论可以参考《行列式的点滴》,它也是我们讨论非方阵行列式的基础。
分析
对于方阵$\boldsymbol{A}_{n\times n}$来说,可以将它看成$n$个行向量的组合,也可以看成$n$个列向量的组合,不管是哪一种,行列式的绝对值都等于这$n$个向量所张成的$n$维立体的超体积。换句话说,对于方阵来说,行、列向量的区分不改变行列式。
对于非方阵$\boldsymbol{B}_{n \times k}$就不一样了,不失一般性,假设$n > k$。我们可以将它看成$n$个$k$维行向量的组合,也可以看成$k$个$n$维列向量的组合。非方针的行列式,应该也具有同样含义,即它们所张成的立体的超体积。
我们来看第一种情况,如果看成$n$个$k$维行向量,那么就得视为这$n$个向量张成的$n$维体的超体积了,但是要注意$n > k$,因此这$n$个向量必然线性相关,因此它们根本就张不成一个$n$维体,也许是一个$n-1$维体甚至更低,这样一来,它的$n$维体的超体积自然为0。
但是第二种情况就没有那么平凡了。如果看成$k$个$n$维列向量,那么这$k$个向量虽然是$n$维的,但它们张成的是一个$k$维体,这$k$维体的超体积未必为0。我们就以这个非平凡的体积作为非方阵行列式的定义好了。
实数域上有限维可除代数只有四种
By 苏剑林 | 2014-11-12 | 61791位读者 | 引用今天上近世代数课,老师谈到除环,举了一个非交换的除环的粒子,也就是四元数环,然后谈到“实数域上有限维可除代数只有4种”,也就是实数本身、复数、四元数和八元数(这里的可除代数就是除环)。这句话我听起来有点熟悉,又好像不大对劲。我记得在某本书上看过,定义为实数上的超复数系,如果满足模的积性,那么就只有以上四种。但是老师的那句话表明即使去掉模的积性,也只有四种。我自然以为老师记错了,跟老师辩论了一翻,然后回到宿舍又找资料,最终确定:实数域上有限维可除代数真的只有四种!下面简单谈谈我对这个问题的认识。
当然,这里不可能给出这个命题的证明,因为这个证明相当不简单,笔者目前也没有弄懂,但是粗略感觉一下为什么,还是有可能的。看到这个命题,我们一下子的感觉可能是:怎么会这么少!我们这里通过例子简单说明一下,确实不会多!
我们已经对复数系很熟悉了,也就是定义在实数上的向量空间,基为$\{1,i\}$,并且给定乘法为
$$1\times i=i \times 1=i,\quad 1^2=1,\quad i^2=-1$$
最近评论