平面曲线的曲率的复数表示
By 苏剑林 | 2014-03-04 | 29132位读者 | 引用开学已经是第二周了,我的《微分几何》也上课两周了,进度比较慢,现在才讲到平面曲线的曲率。在平面曲线$\boldsymbol{t}(t)=(x(t),y(t))$某点上可以找出单位切向量。
$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$
其中$ds^2 =dx^2+dy^2$,将这个向量逆时针旋转90度之后,就可以定义相应的单位法向量$\boldsymbol{n}$,即$\boldsymbol{t}\cdot\boldsymbol{n}=0$。
常规写法
让我们用弧长$s$作为参数来描述曲线方程,$\boldsymbol{t}(s)=(x(s),y(s))$,函数上的一点表示对$s$求导。那么我们来考虑$\dot{\boldsymbol{t}}$,由于$\boldsymbol{t}^2=1$,对s求导得到
$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$
在讨论曲线坐标系的积分时,通常都会出现行列式这个东西,作为“体积元”的因子。在广义相对论中,爱因斯坦场方程的作用量就带有度规的行列式,而在对其进行变分时,自然也就涉及到了行列式的求导问题。我参考了朗道的《场论》以及《数理物理基础--物理需用线性高等数学导引》,了解到相关结果,遂记录如下。
推导
设
\begin{equation}\boldsymbol{A}(t)=\left(a_{ij}(t)\right)_{n\times n}\end{equation}
是一个n阶矩阵,其中每个矩阵元素都是t的函数。其行列式为$|\boldsymbol{A}|$,自然地,考虑
\begin{equation}\frac{d}{dt}|\boldsymbol{A}|\end{equation}
复分析学习1:揭示微分与积分的联系
By 苏剑林 | 2012-08-02 | 34408位读者 | 引用笔者这段时间对复数尤其感兴趣,当然,严格来讲应该是复变函数内容,其中一个原因是通过它,我们可以把一些看似毫不相关的内容联系了起来,体现了数学的简洁美和统一美。我相当有兴趣的其中一个内容是实分析中的泰勒级数和傅里叶级数。这两者都是关于某个函数的级数展开式,其中泰勒级数是用于一般函数展开的,其各项系数通过求n阶导数得到;傅里叶级数的对象是周期函数,其各项系数是通过定积分求得的。在实数世界里,两者毫不相关,但是,复分析却告诉我们:它们只是同一个东西!只是将其在不同的角度“投影”到实数世界里,就产生了不同的“物像”,以至于我们认为它们是不同东西而已。
我们直接来看一个变魔术般的运算:
我们知道,在实数世界里头,我们有
$ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$,其中$|x| < 1$
“未解之谜”:为何不讲中点矩形法则?
By 苏剑林 | 2012-07-20 | 53469位读者 | 引用前言
在之前的一些文章中,我们已经指出过现行教材的一些毛病。比如主次不当(最明显的是那些一上来就讲线性方程组的线性代数教程)、缺乏直观性、缺少引导性等,我想其中最主要的原因可能是过于随大流了,别人怎么编我们也跟着怎么编,缺乏自己的观点和逻辑,因此导致一些常见的毛病就一直流传了下来。也许正因如此,就导致了有那么一种奇怪的现象——明明有一种计算量少的、精确度高一些的方法,教科书几乎从未提及;另外一种计算量稍大、精确度稍低的方法,但每一本同类教科书都讲述了它。不能不说这是一个“未解之谜”......
本文要讲的就是这样的两种方法,它们分别是用来求定积分近似值的“中点矩形法则”和“梯形法则”。对于后者我想绝大多数学习过微积分的朋友都会有印象,它就是那个几乎出现在了所有微积分教材的方法;而前者我相信不少读者都未曾听闻,但让人意外的是,它的计算量稍低,精确度却稍高。本文就简单介绍这两种方法,并且比较它们的精度。而本文的独特之处在于,证明过程沿用了《复分析:可视化方法》的思路,使用几何方法漂亮地估计误差!
我们的目标是在难以精确计算的情况下,通过一定的方法求出$\int_a^b f(x)dx$的近似值,这些方法基本上都是利用了积分即面积的思想。
两种不同的方法
《自然极值》系列——8.极值分析
By 苏剑林 | 2010-12-26 | 45558位读者 | 引用本篇文章是《自然极值》系列最后一篇文章,估计也是2010年最后一篇文章了。在这个美好的2010年,想必大家一定收获匪浅,BoJone也在2010年成长了很多。在2010年的尾声,BoJone和科学空间都祝大家在新的一年里更加开心快乐,在科学的道路上更快速地前行。
在本文,BoJone将与大家讨论求极值的最基本原理。这一探讨思路受到了天才的费恩曼所著《费恩曼物理讲义》的启迪。我们分别对函数求极值(求导)和泛函数极值(变分)进行一些简略的分析。
一、函数求极值
对于一个函数$y=f(x)$,设想它在$x=x_0$处取到最大值,那么显然对于很小的增量$\Delta x$,有
$$f(x_0+\Delta x) \leq f(x_0)\tag{3}$$根据泰勒级数,我们有
$f(x_0+\Delta x)=f(x_0)+f'(x_0)\Delta x$————(4)
最近评论