8 Mar

Transformer升级之路:1、Sinusoidal位置编码追根溯源

最近笔者做了一些理解和改进Transformer的尝试,得到了一些似乎还有价值的经验和结论,遂开一个专题总结一下,命名为“Transformer升级之路”,既代表理解上的深入,也代表结果上的改进。

作为该专题的第一篇文章,笔者将会介绍自己对Google在《Attention is All You Need》中提出来的Sinusoidal位置编码
\begin{equation}\left\{\begin{aligned}&\boldsymbol{p}_{k,2i}=\sin\Big(k/10000^{2i/d}\Big)\\
&\boldsymbol{p}_{k, 2i+1}=\cos\Big(k/10000^{2i/d}\Big)
\end{aligned}\right.\label{eq:sin}\end{equation}
的新理解,其中$\boldsymbol{p}_{k,2i},\boldsymbol{p}_{k,2i+1}$分别是位置$k$的编码向量的第$2i,2i+1$个分量,$d$是向量维度。

作为位置编码的一个显式解,Google在原论文中对它的描述却寥寥无几,只是简单提及了它可以表达相对位置信息,后来知乎等平台上也出现了一些解读,它的一些特点也逐步为大家所知,但总体而言比较零散。特别是对于“它是怎么想出来的”、“非得要这个形式不可吗”等原理性问题,还没有比较好的答案。

因此,本文主要围绕这些问题展开思考,可能在思考过程中读者会有跟笔者一样的感觉,即越思考越觉得这个设计之精妙漂亮,让人叹服~

点击阅读全文...

24 Nov

exp(x)在x=0处的偶次泰勒展开式总是正的

刚看到一个有意思的结论:

对于任意实数$x$及偶数$n$,总有$\sum\limits_{k=0}^n \frac{x^k}{k!} > 0$,即$e^x$在$x=0$处的偶次泰勒展开式总是正的。

下面我们来看一下这个结论的证明,以及它在寻找softmax替代品中的应用。

证明过程

看上去这是一个很强的结果,证明会不会很复杂?其实证明非常简单,记
\begin{equation}f_n(x) = \sum\limits_{k=0}^n \frac{x^k}{k!}\end{equation}
当$n$是偶数时,我们有$\lim\limits_{x\to\pm\infty} f_n(x)=+\infty$,即整体是开口向上的,所以我们只需要证明它的最小值大于0就行了,又因为它是一个光滑连续的多项式函数,所以最小值点必然是某个极小值点。那么换个角度想,我们只需要证明它所有的极值点(不管是极大还是极小)所对应的函数值都大于0。

点击阅读全文...

26 Mar

GELU的两个初等函数近似是怎么来的

GELU,全称为Gaussian Error Linear Unit,也算是RELU的变种,是一个非初等函数形式的激活函数。它由论文《Gaussian Error Linear Units (GELUs)》提出,后来被用到了GPT中,再后来被用在了BERT中,再再后来的不少预训练语言模型也跟着用到了它。随着BERT等预训练语言模型的兴起,GELU也跟着水涨船高,莫名其妙地就成了热门的激活函数了。

gelu函数图像

gelu函数图像

在GELU的原始论文中,作者不仅提出了GELU的精确形式,还给出了两个初等函数的近似形式,本文来讨论它们是怎么得到的。

点击阅读全文...

23 Mar

AdaFactor优化器浅析(附开源实现)

自从GPT、BERT等预训练模型流行起来后,其中一个明显的趋势是模型越做越大,因为更大的模型配合更充分的预训练通常能更有效地刷榜。不过,理想可以无限远,现实通常很局促,有时候模型太大了,大到哪怕你拥有了大显存的GPU甚至TPU,依然会感到很绝望。比如GPT2最大的版本有15亿参数,最大版本的T5模型参数量甚至去到了110亿,这等规模的模型,哪怕在TPU集群上也没法跑到多大的batch size。

这时候通常要往优化过程着手,比如使用混合精度训练(tensorflow下还可以使用一种叫做bfloat16的新型浮点格式),即省显存又加速训练;又或者使用更省显存的优化器,比如RMSProp就比Adam更省显存。本文则介绍AdaFactor,一个由Google提出来的新型优化器,首发论文为《Adafactor: Adaptive Learning Rates with Sublinear Memory Cost》AdaFactor具有自适应学习率的特性,但比RMSProp还要省显存,并且还针对性地解决了Adam的一些缺陷。

Adam

首先我们来回顾一下常用的Adam优化器的更新过程。设$t$为迭代步数,$\alpha_t$为当前学习率,$L(\theta)$是损失函数,$\theta$是待优化参数,$\epsilon$则是防止溢出的小正数,那么Adam的更新过程为

点击阅读全文...

13 Nov

n维空间下两个随机向量的夹角分布

昨天群里大家讨论到了$n$维向量的一些反直觉现象,其中一个话题是“一般$n$维空间下两个随机向量几乎都是垂直的”,这就跟二维/三维空间的认知有明显出入了。要从理论上认识这个结论,我们可以考虑两个随机向量的夹角$\theta$分布,并算算它的均值方差。

概率密度

首先,我们来推导$\theta$的概率密度函数。呃,其实也不用怎么推导,它是$n$维超球坐标的一个直接结论。

要求两个随机向量之间的夹角分布,很显然,由于各向同性,所以我们只需要考虑单位向量,而同样是因为各向同性,我们只需要固定其中一个向量,考虑另一个向量随机变化。不是一般性,考虑随机向量为
\begin{equation}\boldsymbol{x}=(x_1,x_2,\dots,x_n)\end{equation}
而固定向量为
\begin{equation}\boldsymbol{y}=(1,0,\dots,0)\end{equation}

点击阅读全文...

21 Mar

细水长flow之可逆ResNet:极致的暴力美学

今天我们来介绍一个非常“暴力”的模型:可逆ResNet。

为什么一个模型可以可以用“暴力”来形容呢?当然是因为它确实非常暴力:它综合了很多数学技巧,活生生地(在一定约束下)把常规的ResNet模型搞成了可逆的!

标准ResNet与可逆ResNet对比图。可逆ResNet允许信息无损可逆流动,而标准ResNet在某处则存在“坍缩”现象。

标准ResNet与可逆ResNet对比图。可逆ResNet允许信息无损可逆流动,而标准ResNet在某处则存在“坍缩”现象。

模型出自《Invertible Residual Networks》,之前在机器之心也报导过。在这篇文章中,我们来简单欣赏一下它的原理和内容。

可逆模型的点滴

为什么要研究可逆ResNet模型?它有什么好处?以前没有人研究过吗?

可逆的好处

可逆意味着什么?

意味着它是信息无损的,意味着它或许可以用来做更好的分类网络,意味着可以直接用最大似然来做生成模型,而且得益于ResNet强大的能力,意味着它可能有着比之前的Glow模型更好的表现~总而言之,如果一个模型是可逆的,可逆的成本不高而且拟合能力强,那么它就有很广的用途(分类、密度估计和生成任务,等等)。

点击阅读全文...

18 Feb

恒等式 det(exp(A)) = exp(Tr(A)) 赏析

本文的主题是一个有趣的矩阵行列式的恒等式
\begin{equation}\det(\exp(\boldsymbol{A})) = \exp(\text{Tr}(\boldsymbol{A}))\label{eq:main}\end{equation}
这个恒等式在挺多数学和物理的计算中都出现过,笔者都在不同的文献中看到过好几次了。

注意左端是矩阵的指数,然后求行列式,这两步都是计算量非常大的运算;右端仅仅是矩阵的迹(一个标量),然后再做标量的指数。两边的计算量差了不知道多少倍,然而它们居然是相等的!这不得不说是一个神奇的事实。

所以,本文就来好好欣赏一个这个恒等式。

点击阅读全文...

16 Nov

为什么勒贝格积分比黎曼积分强?

学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?

黎曼

黎曼

勒贝格

勒贝格

这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。

本是同根生,相煎何太急?

点击阅读全文...