17 Jul

BERT-of-Theseus:基于模块替换的模型压缩方法

最近了解到一种称为“BERT-of-Theseus”的BERT模型压缩方法,来自论文《BERT-of-Theseus: Compressing BERT by Progressive Module Replacing》。这是一种以“可替换性”为出发点所构建的模型压缩方案,相比常规的剪枝、蒸馏等手段,它整个流程显得更为优雅、简洁。本文将对该方法做一个简要的介绍,给出一个基于bert4keras的实现,并验证它的有效性。

BERT-of-Theseus,原作配图

BERT-of-Theseus,原作配图

模型压缩

首先,我们简要介绍一下模型压缩。不过由于笔者并非专门做模型压缩的,也没有经过特别系统的调研,所以该介绍可能显得不专业,请读者理解。

点击阅读全文...

24 Dec

概率分布的熵归一化(Entropy Normalization)

在上一篇文章《从熵不变性看Attention的Scale操作》中,我们从熵不变性的角度推导了一个新的Attention Scale,并且实验显示具有熵不变性的新Scale确实能使得Attention的外推性能更好。这时候笔者就有一个很自然的疑问:

有没有类似L2 Normalization之类的操作,可以直接对概率分布进行变换,使得保持原始分布主要特性的同时,让它的熵为指定值?

笔者带着疑问搜索了一番,发现没有类似的研究,于是自己尝试推导了一下,算是得到了一个基本满意的结果,暂称为“熵归一化(Entropy Normalization)”,记录在此,供有需要的读者参考。

幂次变换

首先,假设$n$元分布$(p_1,p_2,\cdots,p_n)$,它的熵定义为
\begin{equation}\mathcal{H} = -\sum_i p_i \log p_i = \mathbb{E}[-\log p_i]\end{equation}

点击阅读全文...

31 Jan

Transformer升级之路:8、长度外推性与位置鲁棒性

上一篇文章《Transformer升级之路:7、长度外推性与局部注意力》我们讨论了Transformer的长度外推性,得出的结论是长度外推性是一个训练和预测的不一致问题,而解决这个不一致的主要思路是将注意力局部化,很多外推性好的改进某种意义上都是局部注意力的变体。诚然,目前语言模型的诸多指标看来局部注意力的思路确实能解决长度外推问题,但这种“强行截断”的做法也许会不符合某些读者的审美,因为人工雕琢痕迹太强,缺乏了自然感,同时也让人质疑它们在非语言模型任务上的有效性。

本文我们从模型对位置编码的鲁棒性角度来重新审视长度外推性这个问题,此思路可以在基本不对注意力进行修改的前提下改进Transformer的长度外推效果,并且还适用多种位置编码,总体来说方法更为优雅自然,而且还适用于非语言模型任务。

点击阅读全文...

9 Nov

VQ一下Key,Transformer的复杂度就变成线性了

Efficient Transformer,泛指一切致力于降低Transformer的二次复杂度的工作,开始特指针对Attention的改进,后来更一般的思路,如傅里叶变换、线性RNN等,也被归入这个范畴。不得不说,为了降低Transformer的二次复杂度,各路大牛可谓是“八仙过海,各显神通”,各种神奇的思路“百花齐放”,笔者也从中学习到了不少理论知识。然而,尽管Efficient Transformer在理论上是精彩的,但实际上该领域一直都是不愠不火的状态,并没有实际表现十分出色的模型,在LLM火爆的今天,甚至已经逐渐淡出了大家的视野,也淡出了笔者的兴趣范围。

不过,最近有一篇论文《Transformer-VQ: Linear-Time Transformers via Vector Quantization》,却让笔者为之拍案叫绝。作者非常高明地洞察到,只需要对标准Attention的Key做一下VQ(Vector Quantize),复杂度就会自动降低为线性!这种线性化思路保留了标准Attention的形式,是标准Attention到线性Attention的一个完美过渡,同时最大程度上保留了标准Attention的能力。

高效难题

说起来,本站也算是比较早关注Efficient Transformer相关工作了,最早可以追溯到2019年解读Sparse Transformer的一篇博客《为节约而生:从标准Attention到稀疏Attention》。此后,陆续写的关于Efficient Transformer的其他博文还有

点击阅读全文...

14 Nov

当Batch Size增大时,学习率该如何随之变化?

随着算力的飞速进步,有越多越多的场景希望能够实现“算力换时间”,即通过堆砌算力来缩短模型训练时间。理想情况下,我们希望投入$n$倍的算力,那么达到同样效果的时间则缩短为$1/n$,此时总的算力成本是一致的。这个“希望”看上去很合理和自然,但实际上并不平凡,即便我们不考虑通信之类的瓶颈,当算力超过一定规模或者模型小于一定规模时,增加算力往往只能增大Batch Size。然而,增大Batch Size一定可以缩短训练时间并保持效果不变吗?

这就是接下来我们要讨论的话题:当Batch Size增大时,各种超参数尤其是学习率该如何调整,才能保持原本的训练效果并最大化训练效率?我们也可以称之为Batch Size与学习率之间的Scaling Law。

方差视角

直觉上,当Batch Size增大时,每个Batch的梯度将会更准,所以步子就可以迈大一点,也就是增大学习率,以求更快达到终点,缩短训练时间,这一点大体上都能想到。问题就是,增大多少才是最合适的呢?

点击阅读全文...

8 Aug

【备忘】谈谈dropout

其实这只是一篇备忘...

dropout是深度学习中防止过拟合的一项有效措施,当然,就其思想而言,dropout其实也不仅仅可以用在深度学习中,还可以用在传统的机器学习方法中,只不过在深度学习的神经网络框架下,dropout显得更为自然罢了。

做了什么

dropout是怎么操作的?一般来做,对于输入的张量$x$,dropout就是将部分元素置零,然后将置零后的结果做一个尺度变换。具体来说,以Keras的Dropout(0.6)(x)为例,实际上等价于numpy做的这件事情

import numpy as np

x = np.random.random((10,100)) #模拟一个batch_size=10、维度为100的输入
def Dropout(x, drop_proba):
    return x*np.random.choice(
                              [0,1], 
                              x.shape,  
                              p=[drop_proba,1-drop_proba]
                             )/(1.-drop_proba)

print Dropout(x, 0.6)

点击阅读全文...

21 Mar

细水长flow之可逆ResNet:极致的暴力美学

今天我们来介绍一个非常“暴力”的模型:可逆ResNet。

为什么一个模型可以可以用“暴力”来形容呢?当然是因为它确实非常暴力:它综合了很多数学技巧,活生生地(在一定约束下)把常规的ResNet模型搞成了可逆的!

标准ResNet与可逆ResNet对比图。可逆ResNet允许信息无损可逆流动,而标准ResNet在某处则存在“坍缩”现象。

标准ResNet与可逆ResNet对比图。可逆ResNet允许信息无损可逆流动,而标准ResNet在某处则存在“坍缩”现象。

模型出自《Invertible Residual Networks》,之前在机器之心也报导过。在这篇文章中,我们来简单欣赏一下它的原理和内容。

可逆模型的点滴

为什么要研究可逆ResNet模型?它有什么好处?以前没有人研究过吗?

可逆的好处

可逆意味着什么?

意味着它是信息无损的,意味着它或许可以用来做更好的分类网络,意味着可以直接用最大似然来做生成模型,而且得益于ResNet强大的能力,意味着它可能有着比之前的Glow模型更好的表现~总而言之,如果一个模型是可逆的,可逆的成本不高而且拟合能力强,那么它就有很广的用途(分类、密度估计和生成任务,等等)。

点击阅读全文...

29 Jan

抛开约束,增强模型:一行代码提升albert表现

本文标题看起来有点“标题党”了,不过所作改动放到bert4keras框架下,确实是一行代码的变动,至于是否有提升,这个笔者不敢打包票,不过测了几个算是比较有代表性的任务,均显示持平甚至有提升,所以标题说的也基本是事实。

那究竟是什么改动呢?其实一句话也能讲清楚:

在下游任务中,放弃albert的权重共享的约束,也就是把albert当bert用。

具体思路细节,请接着看下去~

点击阅读全文...