19 Jul

一道整数边三角形题目

这是一道来自“数联天地”的题目:

三边长均为整数的三角形,周长为1000,其中一个内角是另外一个内角的两倍。求三边长度

咋看上去这是一道几何题目,但实际上这是一道初等数论题,而且主要是不定方程问题。类似的题目在数学竞赛中其实有可能出到,在这里和大家探讨一番。话说回来,其实笔者小时候很喜欢数论方面的内容的,在小学和初中,经常围绕着“素数”、“完全数”、“亲和数”、“大数分解”等等名词钻研看书。现在学习了微积分等内容之后,兴趣逐渐转向了实用性较强的数学,因而数论内容的水平不高,大家见笑了。

点击阅读全文...

19 Jul

奥赛版《春天里》

相信不少读者已经听过《春天里》这首歌,在今年的全国天文奥赛和这次天文夏令营中,这首歌也成了热门。不过热门的不是原版,而是经过改编后的奥赛版《春天里》。请看————

春天里

还记得许多年前的春天
那时我还没有天文奥赛
没有天文馆就没有她
没有24小时热水的家
可当初的我们那么快乐
虽然只有一架破望远镜
在固原在杭州在广州
唱着那无人问津的歌谣

点击阅读全文...

20 Jul

[更正]一道经典不等式的美妙证明

在数学竞赛中,很多题目都专门设置了一种技巧,这种技巧在很大程度上是不怎么理所当然的,换句话说,难以“顺理成章”地想下去,或者是说方法不成系统的,这也是我有点不喜欢数学竞赛题目的一个原因。当然,另一方面,个人认为数学竞赛比物理竞赛更能锻炼一个人的思维能力,尤其是在抽象思维以及几何想象能力等,因此做一些这样的题目也会有好处的。

下面就是一道很经典的竞赛题,它是在韩国举行的第42届IMO中的题目:

设a,b,c都是正实数,求证:
$\frac{a}{\sqrt{a^2+8bc}}+ \frac{b}{\sqrt{b^2+8ac}} + \frac{c}{\sqrt{c^2+8ab}} \geq 1$

点击阅读全文...

22 Jul

三角函数幂的积分

昨天在研究一个最优化问题时,遇到了一个这样的积分:
$$\int \frac{1}{\cos^3 \theta} d\theta$$

然后就顺便研究了一下这种类型的函数的积分。一般来讲,这类积分可以写成$\int cos^n \theta d\theta$或$\int sin^n \theta d\theta$,其中n是一个整数。

首先我们来解决n=1的情况,我们很容易就有$\int cos\theta d\theta=sin\theta +C$或$\int sin\theta d\theta=-cos\theta +C$,这是一个基本的结果。

如果n是大于1的正整数,那么可以用递推的方法来搞定:

点击阅读全文...

24 Jul

今日晒书

学着《还珠格格3之天上人间》中的情节,今天我也把自己书架上的书搬上楼去晒晒。

有的书是新买的,有的已经买了一两年了,不管怎样,都拿上去沐浴阳光。

后来才发现,把书搬上去很累很热,把书搬下来重新整理更累更热。整个过程从早上九点开始,直到下午两点才完全结束。

原来,把书搬到太阳下展开的场景很壮观......

当然,晒书只是一个契机,我顺便收拾了一下凌乱的房间,这次算是比较彻底了,一些平常没有清洁的角落都清理了一遍。因为再过几天就正式成为高三了。也许下一次晒书,或者下一次整理,已经是明年的今天了。所以不论怎样,今天都要好好“干一场”!

书籍是人类进步的阶梯,呵呵^_^

点击阅读全文...

25 Jul

关于e,i,π的那些鲜为人知的事儿...

科学空间曾经提到过$e^{i\pi}+1=0$这条被誉为“数学最卓越的公式的公式之一”的公式,而读者们或许很就之前就已经听说过甚至证明过它了。那么,各位读者是否还知道其他的一些关于e,i,π的轶事呢?例如你知道$i^i$等于多少吗?还有$i^{1//i}$呢?

本文就让我们来欣赏一次数学之美!

点击阅读全文...

25 Jul

收谷问题(1)

在农村,7月是忙碌的月份,农民们要忙着收割稻谷,收割完后要晒谷,同时还得准备“下秧”,准备新一轮的耕,BoJone家自然也不例外。不过我家田比较少(1亩左右),收割机几分钟搞定,谷也三两天就晒完了。不过在晒谷的时候,BoJone在考虑一个“收谷”问题:

晒谷时得先把成堆的谷子摊开,薄薄地平铺在平地上,等到傍晚或即将下雨时(这是最惨的情况,搞不好会淋谷)就将其收起来。问题就源于这里,一般来说我们会把谷均匀地铺成矩形,要把所有的谷都推到矩形里或外的哪一点上,才使得我们做功做小?

这个问题还可以推广开来,例如对于一地任意形状的谷子(如三角形),把它集中堆到哪个点最“轻松”?一堆固定质量的谷子,要把它平铺成什么形状,才使得收谷时最“轻松”?当然,这个问题的解不仅仅用于“收谷”,在很多规划建设中也可以应用到,例如要在一个人口大致均匀的城市中建设一个服务中心,这个服务中心应该建在哪里?这有点类似于我们之前讨论过的费马点问题 ,都是费马点只考虑了三个点的距离,而这个问题得考虑所有点的距离。

点击阅读全文...

27 Jul

科学空间:2011年8月重要天象

夏秋之交的八月,天象剧场依然是精彩纷呈。其中最受关注的要属英仙座流星雨,这也是天文爱好者每年最热衷观测的项目。虽然几颗较亮的行星在本月观测条件都较为一般,但海王星将在8月23日冲日,有兴趣的朋友可以借助望远统来对它进行观测。而小有名气的45P/Honda-Mrkos-Pajdusakovva彗星也将在8月16日过近地点逐渐进入较佳的观测时段。

点击阅读全文...