自然数集中 N = ab + c 时 a + b + c 的最小值
By 苏剑林 | 2023-09-20 | 38106位读者 | 引用前天晚上微信群里有群友提出了一个问题:
对于一个任意整数$N > 100$,求一个近似算法,使得$N=a\times b+c$(其中$a,b,c$都是非负整数),并且令$a+b+c$尽量地小。
初看这道题,笔者第一感觉就是“这还需要算法?”,因为看上去自由度太大了,应该能求出个解析解才对,于是简单分析了一下之后就给出了个“答案”,结果很快就有群友给出了反例。这时,笔者才意识到这题并非那么平凡,随后正式推导了一番,总算得到了一个可行的算法。正当笔者以为这个问题已经结束时,另一个数学群的群友精妙地构造了新的参数化,证明了算法的复杂度还可以进一步下降!
整个过程波澜起伏,让笔者获益匪浅,遂将过程记录在此,与大家分享。
脑洞大开:非线性RNN居然也可以并行计算?
By 苏剑林 | 2023-09-26 | 53497位读者 | 引用近年来,线性RNN由于其可并行训练以及常数推理成本等特性,吸引了一定研究人员的关注(例如笔者之前写的《Google新作试图“复活”RNN:RNN能否再次辉煌?》),这让RNN在Transformer遍地开花的潮流中仍有“一席之地”。然而,目前看来这“一席之地”只属于线性RNN,因为非线性RNN无法高效地并行训练,所以在架构之争中是“心有余而力不足”。
不过,一篇名为《Parallelizing Non-Linear Sequential Models over the Sequence Length》的论文有不同的看法,它提出了一种迭代算法,宣传可以实现非线性RNN的并行训练!真有如此神奇?接下来我们一探究竟。
求不动点
原论文对其方法做了非常一般的介绍,而且其侧重点是PDE和ODE,这里我们直接从RNN入手。考虑常见的简单非线性RNN:
\begin{equation}x_t = \tanh(Ax_{t-1} + u_t)\label{eq:rnn}\end{equation}
预训练一下,Transformer的长序列成绩还能涨不少!
By 苏剑林 | 2023-10-08 | 36951位读者 | 引用作为LLM的主流模型架构,Transformer在各类任务上的总体表现都出色,大多数情况下,Transformer的槽点只是它的平方复杂度,而不是效果——除了一个名为Long Range Arena(下面简称LRA)的Benchmark。一直以来,LRA一直是线性RNN类模型的“主场”,与之相比Transformer在上面有明显的差距,以至于让人怀疑这是否就是Transformer的固有缺陷。
不过,近日论文《Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors》将这“缺失的一环”给补齐了。论文指出,缺乏预训练是Transformer在LRA上效果较差的主要原因,而所有架构都可以通过预训练获得一定的提升,Transformer的提升则更为明显。
旧背景
Long Range Arena(LRA)是长序列建模的一个Benchmark,提出自论文《Long Range Arena: A Benchmark for Efficient Transformers》,从论文标题就可以看出,LRA是为了测试各种Efficient版的Transformer而构建的,里边包含了多种类型的数据,序列长度从1k到16k不等,此前不少Efficient Transformer的工作也都在LRA进行了测试。虽然在代表性方面有些争议,但LRA依然不失为一个测试Efficient Transformer的长序列能力的经典Benchmark。
EMO:基于最优传输思想设计的分类损失函数
By 苏剑林 | 2023-10-13 | 53312位读者 | 引用众所周知,分类任务的标准损失是交叉熵(Cross Entropy,等价于最大似然MLE,即Maximum Likelihood Estimation),它有着简单高效的特点,但在某些场景下也暴露出一些问题,如偏离评价指标、过度自信等,相应的改进工作也有很多,此前我们也介绍过一些,比如《再谈类别不平衡问题:调节权重与魔改Loss的对比联系》、《如何训练你的准确率?》、《缓解交叉熵过度自信的一个简明方案》等。由于LLM的训练也可以理解为逐token的分类任务,默认损失也是交叉熵,因此这些改进工作在LLM流行的今天依然有一定的价值。
在这篇文章中,我们介绍一篇名为《EMO: Earth Mover Distance Optimization for Auto-Regressive Language Modeling》的工作,它基于最优传输思想提出了新的改进损失函数EMO,声称能大幅提高LLM的微调效果。其中细节如何?让我们一探究竟。
从梯度最大化看Attention的Scale操作
By 苏剑林 | 2023-10-22 | 68013位读者 | 引用我们知道,Scaled Dot-Product Attention的Scale因子是$\frac{1}{\sqrt{d}}$,其中$d$是$\boldsymbol{q},\boldsymbol{k}$的维度。这个Scale因子的一般解释是:如果不除以$\sqrt{d}$,那么初始的Attention就会很接近one hot分布,这会造成梯度消失,导致模型训练不起来。然而,可以证明的是,当Scale等于0时同样也会有梯度消失问题,这也就是说Scale太大太小都不行。
那么多大的Scale才适合呢?$\frac{1}{\sqrt{d}}$是最佳的Scale了吗?本文试图从梯度角度来回答这个问题。
已有结果
在《浅谈Transformer的初始化、参数化与标准化》中,我们已经推导过标准的Scale因子$\frac{1}{\sqrt{d}}$,推导的思路很简单,假设初始阶段$\boldsymbol{q},\boldsymbol{k}\in\mathbb{R}^d$都采样自“均值为0、方差为1”的分布,那么可以算得
\begin{equation}\mathbb{V}ar[\boldsymbol{q}\cdot\boldsymbol{k}] = d\end{equation}
VQ一下Key,Transformer的复杂度就变成线性了
By 苏剑林 | 2023-11-09 | 64737位读者 | 引用Efficient Transformer,泛指一切致力于降低Transformer的二次复杂度的工作,开始特指针对Attention的改进,后来更一般的思路,如傅里叶变换、线性RNN等,也被归入这个范畴。不得不说,为了降低Transformer的二次复杂度,各路大牛可谓是“八仙过海,各显神通”,各种神奇的思路“百花齐放”,笔者也从中学习到了不少理论知识。然而,尽管Efficient Transformer在理论上是精彩的,但实际上该领域一直都是不愠不火的状态,并没有实际表现十分出色的模型,在LLM火爆的今天,甚至已经逐渐淡出了大家的视野,也淡出了笔者的兴趣范围。
不过,最近有一篇论文《Transformer-VQ: Linear-Time Transformers via Vector Quantization》,却让笔者为之拍案叫绝。作者非常高明地洞察到,只需要对标准Attention的Key做一下VQ(Vector Quantize),复杂度就会自动降低为线性!这种线性化思路保留了标准Attention的形式,是标准Attention到线性Attention的一个完美过渡,同时最大程度上保留了标准Attention的能力。
高效难题
说起来,本站也算是比较早关注Efficient Transformer相关工作了,最早可以追溯到2019年解读Sparse Transformer的一篇博客《为节约而生:从标准Attention到稀疏Attention》。此后,陆续写的关于Efficient Transformer的其他博文还有
简单得令人尴尬的FSQ:“四舍五入”超越了VQ-VAE
By 苏剑林 | 2023-10-31 | 78296位读者 | 引用正如“XXX is all you need”一样,有不少论文都以“简单得令人尴尬”命名(An Embarrassingly Simple XXX),但在笔者看来,这些论文大多数都是噱头多于实力。不过,笔者最近阅读到的一篇论文,真的让人不由得发出“简单得令人尴尬”的感叹~
论文的标题是《Finite Scalar Quantization: VQ-VAE Made Simple》,顾名思义,这是一篇旨在用FSQ(Finite Scalar Quantization)简化VQ-VAE的工作。随着生成模型、多模态LLM的逐渐流行,VQ-VAE及其后续工作也作为“图像的Tokenizer”而“水涨船高”。然而,VQ-VAE的训练本身也存在一些问题,而FSQ这篇论文则声称通过更简单的“四舍五入”就可以达到同样的目的,并且有着效果更好、收敛更快、训练更稳的优点。
FSQ真有这么神奇?接下来我们一起学习一下。
VQ
首先,我们来了解一下“VQ”。VQ全称是“Vector Quantize”,可以翻译为“向量量子化”或者“向量量化”,是指将无限、连续的编码向量映射为有限、离散的整数数字的一种技术。如果我们将VQ应用在自编码器的中间层,那么可以在压缩输入大小的同时,让编码结果成为一个离散的整数序列。
生成扩散模型漫谈(二十一):中值定理加速ODE采样
By 苏剑林 | 2023-12-07 | 71060位读者 | 引用在生成扩散模型的发展史上,DDIM和同期Song Yang的扩散SDE都称得上是里程碑式的工作,因为它们建立起了扩散模型与随机微分方程(SDE)、常微分方程(ODE)这两个数学领域的紧密联系,从而允许我们可以利用SDE、ODE已有的各种数学工具来对分析、求解和拓展扩散模型,比如后续大量的加速采样工作都以此为基础,可以说这打开了生成扩散模型的一个全新视角。
本文我们聚焦于ODE。在本系列的(六)、(十二)、(十四)、(十五)、(十七)等博客中,我们已经推导过ODE与扩散模型的联系,本文则对扩散ODE的采样加速做简单介绍,并重点介绍一种巧妙地利用“中值定理”思想的新颖采样加速方案“AMED”。
欧拉方法
正如前面所说,我们已经有多篇文章推导过扩散模型与ODE的联系,所以这里不重复介绍,而是直接将扩散ODE的采样定义为如下ODE的求解:
\begin{equation}\frac{d\boldsymbol{x}_t}{dt} = \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\label{eq:dm-ode}\end{equation}
最近评论