16 Nov

天体力学巨匠——拉普拉斯

本文其实好几个月前就已经写好了,讲的是我最感兴趣的天体力学领域的故事,已经发表在2012年11月的《天文爱好者》上。

天体力学巨匠——拉普拉斯

天体力学巨匠——拉普拉斯

作为一本天文科普杂志,《天文爱好者》着眼于普及天文,内容偏向于有趣的天体物理等,比较少涉及到天体力学。事实上,在天文发展史中,天体力学——研究天体纯粹在万有引力作用下演化的科学——占据了相当重要的地位。过去,天文就被划分为天体力学、天体物理以及天体测量学三个大块。只是在近现代,由于电子计算机的飞速发展,天体力学的多数问题都交给了计算机数值计算解决,因此这一领域逐渐淡出了人们视野。不过,回味当初那段天体力学史,依然让我们觉得激动人心。

首先引入“天体力学(Celestial mechanics)”这一术语的是法国著名数学家、天文巨匠拉普拉斯。他的全名为皮埃尔?西蒙?拉普拉斯(Pierre?Simon marquis de Laplace),因研究太阳系稳定性的动力学问题被誉为法国的牛顿和天体力学之父。他和生活在同一时代的法国著名数学家拉格朗日以及勒让德(Adrien-Marie Legendre)并称为“三L”。

神秘的少年时期

由于1925年的一场大火,很多拉普拉斯的生活细节资料都丢失了。根据W. W. Rouse Ball的说法,他可能是一个普通农民或农场工人的儿子,1749年3月23日出生于诺曼底卡尔瓦多斯省的伯蒙特恩奥格。少年时期,拉普拉斯凭借着自己的才能和热情,在富人邻居的帮助下完成了学业。他父亲希望这能使他将来以宗教为业,16岁时,他被送往卡昂大学读神学。但他很快在数学上显露头角。

点击阅读全文...

21 Nov

2012年天象

Astronomy Calendar of Celestial Events
2012年全年天象
翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html

(北京时间)

2011年版本

一月
01 日 14:15 上弦月
01 日 金星位于: 34° E
03 二 04:19 月球过远地点: 404600 km
04 三 15:23 象限仪座流星雨:ZHR = 120
05 四 11:59 地球过近日点:0.9833 AU
05 四 17:17 月合昴宿星团 3.1° N
06 五 22:30 月亮过升交点
07 六 05:46 月亮过最北点: 22.5° N
09 一 15:30 满月
16 一 15:21 月合角宿一 2° N
16 一 17:08 下弦月
18 三 05:28 月球过近地点: 369900 km
20 五 02:26 月亮过降交点
20 五 10:12 月亮过最南点: 22.5° S
23 一 15:39 新月
31 二 01:42 月球过远地点:404300 km
31 二 12:10 上弦月

点击阅读全文...

27 Dec

费曼路径积分思想的发展(三)

3、费曼图和量子电动力学的重整化

在1947年美国避难岛(Shelter Island)会议上,兰姆报导了他的重大发现,即现今所称的兰姆位移;氢原子的$2S_{\frac{1}{2}}$能级比$2P_{\frac{1}{2}}$高出约1000MHz。而按照狄拉克理论,对纯库仑相互作用的电子-质子系统,这两个能级应该是简并的。人们很快就认识到,该位移应归之于一阶近似的辐射校正[19]。贝特用一个电子的校正质量就非相对论近似得出了氢原子nS能级的位移公:

$$\frac{8}{3\pi}(\frac{e^2}{\hbar c})Ry \frac{Z^4}{n^3} Ln\frac{K}{ < E_n-E_m > _{AV}}$$

点击阅读全文...

27 Dec

费曼路径积分思想的发展(四)

4、量子场论中的泛函方法

路径积分出现之初,大多数物理学家反映都很冷淡,甚至怀疑它的正确性。这一方面是对路径积分方法的陌生与误解所致。在泊珂淖会议上,玻尔就把费曼图误解成粒子运动的轨迹,并对之进行了尖锐的批评。([19],P.459)另一方面,费曼并没有用公理化的方法,从作用量或拉格朗日量出发系统地推导出费曼规则,他是靠经验、猜测、检验和比较来给出与各种图相应的规则的。尽管如此,费曼却能把他的方法推广到当时热门的介子理论,并且只需一个晚上就可解决他人用正则哈密顿方法要用几个月的时间才能解决的问题。费曼方法的有效性,使戴逊大为惊讶,并促使他相信路径积分“必定是根本上正确的”([1],P.54)理论。随之,戴逊便决定把“理解费曼(的思想)并用一种他人能理解的语言来加以阐述”([1],p.54)作为自己的主要工作。1948年,戴逊成功地证明了朝永振一朗、施温格和费曼三人的理论“在其共同适用领域内”[25]的等价性。费曼的粒子图像的路径积分方法由此改头换面,变成了场论形式的泛函积分方法。

点击阅读全文...

16 Jan

新科学家:割裂时间空间,统一相对论量子论

这篇文章源于《新科学家》2010年8月7日刊,它介绍了物理学家Horava为了统一相对论和量子力学,把广义相对论的时空联系割裂的尝试。在相对论中,时间和空间结合成了不可分割的整体。而现在,有物理学家却要把时间与空间分开,来建立让广义相对论和量子力学相调和的统一理论。我对这个理论挺感兴趣的,当然,我还没有能力弄懂它。只是它符合了我们大多数人的一个直觉,就是时间总有跟空间不同的地方,它们之间不应该完全等同起来。不过,事实如何,只有未来的实验能够严重了。

本文并没有官方的中文译文,现载的译文来自“译言网”。译文有一些翻译不大正当的地方,由于时间限制,无法一一修正,但是我觉得对于理解本文内容已经足够了。如果有疑问,不妨参考后边的英文原文,并在此提出与大家讨论。

对爱因斯坦的反思:空间-时间耦合的物理数学的终结

纠结于融合引力和量子力学的物理学家们正向着一个受到铅笔芯启发的理论欢呼雀跃,这个理论可以很简单地让他们取得成功。

它曾是一个改变了我们思考空间和时间的方式的报告。那一年是1908年,德国数学家赫尔曼-闵可夫斯基正尝试着理解爱因斯坦火热的新思想——即我们现在所熟知的狭义相对论,它描述当物质运动很快时它们是如何收缩以及时间是如何扭曲的。“从此独立的空间和时间将注定淡出到纯粹的虚幻中,”闵可夫斯基说道:“而只有两者的统一才能保证一个独立的现实世界。”

点击阅读全文...

5 Feb

小数的二进制表示

也许中学老师会告诉5、10、20等等的十进制数字怎么化成二进制数字,但又没有老师告诉你怎么将十进制的0.1变成二进制的小数呢?

我们将一个十进制整数化为二进制是这样操作的:在十进制的计算法则中,将十进制数除以2,得到商和余数;把商除以2,得到商和余数;...重复下去,直到商为0。然后把每次得到的余数按倒序排列,就得到了二进制数字。比如6:

$$\begin{aligned}6\div 2=3...0 \\ 3\div 2=1...1 \\ 1\div 2=0...1\end{aligned}$$

倒过来就是110。这就是二进制中的6了。

点击阅读全文...

18 Feb

[问题解答]有多少个5?

今天早上子瑞给我发了一个问题来,他说:

一个数,各个数字加起来等于104,乘以2后各个数字加起来等于100,已知这个数字没有9,有4个8、3个7和2个6,问这个数字有多少个5?

当然这道题目不难,稍加分析就可以得出答案,不过不得不说这是一道趣题,而且更像一个数字游戏。

点击阅读全文...

21 Feb

[问题解答]有多少位数字?

解决完上一题《有多少个5?》后,子瑞表示看到一道类似的题目,当然,这道题比上一道难一些:

一个数,各个数字加起来等于900,乘以2后各个数字加起来还是等于900,已知这个数字只有3、4、5、6组成,请问满足条件的最大数与最小数的积有多少位数?

要解答这个问题,我们只需要知道最大数和最小数分别有多少位即可。因为最大数必然是6...3的形式,而最小数只能是3...6的形式,它们的位数之和就是所求的位数。

怎样比较两个数的大小呢?显然,在不同位数的数时,位数多的数要大,同样位数才从高到低逐位比较。因此,我们应当考虑位数的最大与最小。

点击阅读全文...