《为什么现在的LLM都是Decoder-only的架构?》FAQ
By 苏剑林 | 2023-03-20 | 48916位读者 | 引用上周笔者写了《为什么现在的LLM都是Decoder-only的架构?》,总结了一下我在这个问题上的一些实验结论和猜测。果然是热点问题流量大,paperweekly的转发没多久阅读量就破万了,知乎上点赞数也不少。在几个平台上,陆陆续续收到了读者的一些意见或者疑问,总结了其中一些有代表性的问题,做成了本篇FAQ,希望能进一步帮助大家解决疑惑。
回顾
在《为什么现在的LLM都是Decoder-only的架构?》中,笔者对GPT和UniLM两种架构做了对比实验,然后结合以往的研究经历,猜测了如下结论:
1、输入部分的注意力改为双向不会带来收益,Encoder-Decoder架构的优势很可能只是源于参数翻倍;
2、双向注意力没有带来收益,可能是因为双向注意力的低秩问题导致效果下降。
所以,基于这两点推测,我们得到结论:
在同等参数量、同等推理成本下,Decoder-only架构是最优选择。
从JL引理看熵不变性Attention
By 苏剑林 | 2023-04-10 | 29433位读者 | 引用在《从熵不变性看Attention的Scale操作》、《熵不变性Softmax的一个快速推导》中笔者提出了熵不变性Softmax,简单来说就是往Softmax之前的Attention矩阵多乘上一个$\log n$,理论上有助于增强长度外推性,其中$n$是序列长度。$\log n$这个因子让笔者联系到了JL引理(Johnson-Lindenstrauss引理),因为JL引理告诉我们编码$n$个向量只需要$\mathcal{O}(\log n)$的维度就行了,大家都是$\log n$,这两者有没有什么关联呢?
熵不变性
我们知道,熵是不确定性的度量,用在注意力机制中,我们将它作为“集中注意力的程度”。所谓熵不变性,指的是不管序列长度$n$是多少,我们都要将注意力集中在关键的几个token上,而不要太过分散。为此,我们提出的熵不变性Attention形式为
\begin{equation}Attention(Q,K,V) = softmax\left(\frac{\log_{512} n}{\sqrt{d}}QK^{\top}\right)V\label{eq:core}\end{equation}
大词表语言模型在续写任务上的一个问题及对策
By 苏剑林 | 2023-09-13 | 30168位读者 | 引用对于LLM来说,通过增大Tokenizer的词表来提高压缩率,从而缩短序列长度、降低解码成本,是大家都喜闻乐见的事情。毕竟增大词表只需要增大Embedding层和输出的Dense层,这部分增加的计算量几乎不可感知,但缩短序列长度之后带来的解码速度提升却是实打实的。当然,增加词表大小也可能会对模型效果带来一些负面影响,所以也不能无节制地增加词表大小。本文就来分析增大词表后语言模型在续写任务上会出现的一个问题,并提出参考的解决方案。
优劣分析
增加词表大小的好处是显而易见的。一方面,由于LLM是自回归的,它的解码会越来越慢,而“增大词表 → 提高压缩率 → 缩短序列长度”,换言之相同文本对应的tokens数变少了,也就是解码步数变少了,从而解码速度提升了;另一方面,语言模型的训练方式是Teacher Forcing,缩短序列长度能够缓解Teacher Forcing带来的Exposure Bias问题,从而可能提升模型效果。
我在Performer中发现了Transformer-VQ的踪迹
By 苏剑林 | 2023-11-29 | 44027位读者 | 引用前些天我们在《VQ一下Key,Transformer的复杂度就变成线性了》介绍了“Transformer-VQ”,这是通过将Key序列做VQ(Vector Quantize)变换来实现Attention复杂度线性化的方案。诚然,Transformer-VQ提供了标准Attention到线性Attentino的一个非常漂亮的过渡,给人一种“大道至简”的美感,但熟悉VQ的读者应该能感觉到,当编码表大小或者模型参数量进一步增加时,VQ很可能会成为效果提升的瓶颈,因为它通过STE(Straight-Through Estimator)估计的梯度大概率是次优的(FSQ的实验结果也算是提供了一些佐证)。此外,Transformer-VQ为了使训练效率也线性化所做的梯度截断,也可能成为将来的效果瓶颈之一。
为此,笔者花了一些时间思考可以替代掉VQ的线性化思路。从Transformer-VQ的$\exp\left(QC^{\top}\right)$形式中,笔者联想到了Performer,继而“顺藤摸瓜”地发现原来Performer可以视为Soft版的Transformer-VQ。进一步地,笔者尝试类比Performer的推导方法来重新导出Transformer-VQ,为其后的优化提供一些参考结果。
脑洞大开:非线性RNN居然也可以并行计算?
By 苏剑林 | 2023-09-26 | 52952位读者 | 引用近年来,线性RNN由于其可并行训练以及常数推理成本等特性,吸引了一定研究人员的关注(例如笔者之前写的《Google新作试图“复活”RNN:RNN能否再次辉煌?》),这让RNN在Transformer遍地开花的潮流中仍有“一席之地”。然而,目前看来这“一席之地”只属于线性RNN,因为非线性RNN无法高效地并行训练,所以在架构之争中是“心有余而力不足”。
不过,一篇名为《Parallelizing Non-Linear Sequential Models over the Sequence Length》的论文有不同的看法,它提出了一种迭代算法,宣传可以实现非线性RNN的并行训练!真有如此神奇?接下来我们一探究竟。
求不动点
原论文对其方法做了非常一般的介绍,而且其侧重点是PDE和ODE,这里我们直接从RNN入手。考虑常见的简单非线性RNN:
\begin{equation}x_t = \tanh(Ax_{t-1} + u_t)\label{eq:rnn}\end{equation}
VQ一下Key,Transformer的复杂度就变成线性了
By 苏剑林 | 2023-11-09 | 64216位读者 | 引用Efficient Transformer,泛指一切致力于降低Transformer的二次复杂度的工作,开始特指针对Attention的改进,后来更一般的思路,如傅里叶变换、线性RNN等,也被归入这个范畴。不得不说,为了降低Transformer的二次复杂度,各路大牛可谓是“八仙过海,各显神通”,各种神奇的思路“百花齐放”,笔者也从中学习到了不少理论知识。然而,尽管Efficient Transformer在理论上是精彩的,但实际上该领域一直都是不愠不火的状态,并没有实际表现十分出色的模型,在LLM火爆的今天,甚至已经逐渐淡出了大家的视野,也淡出了笔者的兴趣范围。
不过,最近有一篇论文《Transformer-VQ: Linear-Time Transformers via Vector Quantization》,却让笔者为之拍案叫绝。作者非常高明地洞察到,只需要对标准Attention的Key做一下VQ(Vector Quantize),复杂度就会自动降低为线性!这种线性化思路保留了标准Attention的形式,是标准Attention到线性Attention的一个完美过渡,同时最大程度上保留了标准Attention的能力。
高效难题
说起来,本站也算是比较早关注Efficient Transformer相关工作了,最早可以追溯到2019年解读Sparse Transformer的一篇博客《为节约而生:从标准Attention到稀疏Attention》。此后,陆续写的关于Efficient Transformer的其他博文还有
简单得令人尴尬的FSQ:“四舍五入”超越了VQ-VAE
By 苏剑林 | 2023-10-31 | 77234位读者 | 引用正如“XXX is all you need”一样,有不少论文都以“简单得令人尴尬”命名(An Embarrassingly Simple XXX),但在笔者看来,这些论文大多数都是噱头多于实力。不过,笔者最近阅读到的一篇论文,真的让人不由得发出“简单得令人尴尬”的感叹~
论文的标题是《Finite Scalar Quantization: VQ-VAE Made Simple》,顾名思义,这是一篇旨在用FSQ(Finite Scalar Quantization)简化VQ-VAE的工作。随着生成模型、多模态LLM的逐渐流行,VQ-VAE及其后续工作也作为“图像的Tokenizer”而“水涨船高”。然而,VQ-VAE的训练本身也存在一些问题,而FSQ这篇论文则声称通过更简单的“四舍五入”就可以达到同样的目的,并且有着效果更好、收敛更快、训练更稳的优点。
FSQ真有这么神奇?接下来我们一起学习一下。
VQ
首先,我们来了解一下“VQ”。VQ全称是“Vector Quantize”,可以翻译为“向量量子化”或者“向量量化”,是指将无限、连续的编码向量映射为有限、离散的整数数字的一种技术。如果我们将VQ应用在自编码器的中间层,那么可以在压缩输入大小的同时,让编码结果成为一个离散的整数序列。
注意力机制真的可以“集中注意力”吗?
By 苏剑林 | 2023-12-12 | 43824位读者 | 引用之前在《Transformer升级之路:3、从Performer到线性Attention》、《为什么现在的LLM都是Decoder-only的架构?》等文章中,我们从Attention矩阵的“秩”的角度探讨了Attention机制,并曾经判断线性Attention不如标准Attention的关键原因正是“低秩瓶颈”。然而,这一解释对于双向的Encoder模型或许成立,但却难以适用于单向的Decoder模型,因为Decoder的Attention矩阵的上三角部分是被mask掉的,留下的下三角矩阵必然是满秩的,而既然都是满秩了,那么低秩瓶颈问题似乎就不复存在了。
所以,“低秩瓶颈”并不能完全解释线性Attention的能力缺陷。在这篇文章中,笔者试图寻求另一个角度的解释。简单来说,与标准Attention相比,线性Attention更难“集中注意力”,从而难以准确地定位到关键token,这大概是它效果稍逊一筹的主要原因。
最近评论